Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées

M308 : Théorie des groupes

Clément BOULONNE

Avec la participation de Jean-Yves PALLARO, d'après des notes de cours données par Chenxi GUO.

Cours dispensé par Pierre Debes

Table des matières

1	Stru	Structures de groupe					
	1.1	Généralités	-				
	1.2	Structure induite					
	1.3	Morphisme de groupe					
	1.4	Structure produit direct					
	1.5	Structure quotient					
	1.6	Groupes monogènes					
	1.7	Automorphismes intérieurs, groupes simples					
2	Gro	Groupe opérant sur un ensemble					
	2.1	Groupe de permutations	21				
	2.2	Action d'un groupe	25				
	2.3	Produit semi-direct					
3	Thé	eorèmes de Sylow	13				
	3.1	<i>p</i> -groupes	13				
	3.2	Théorèmes de Sylow					
	3.3	Applications					
4	Gro	oupes abéliens, groupes nilpotents, résolubles 4	١7				
	4.1	Groupes abéliens	17				
	4.2	Commutateurs et groupes dérivés					

Chapitre 1

Structures de groupe

1.1 Généralités

Définition 1.1. On appelle groupe la donnée (G, \circ) d'un ensemble G et d'une loi (ou opération) de composition interne, c'est-à-dire une application

$$\begin{array}{ccc} G \times G & \mapsto & G \\ (g_1, g_2) & \to & g_1.g_2 \end{array}.$$

vérifiant :

- 1. Associativité : $x \circ (y \circ z) = (x \circ y) \circ z$
- 2. Élément neutre : il existe $e \in G$ tel que $e \circ x = x \circ e = x$
- 3. Élément symétrique : $\forall x \in G$, il existe $x' \in G$ tel que $x \circ x' = x' \circ x = e$. On note $x' = x^{-1}$.

Remarque 1.2. Si en plus, on a la commutativité : $x \circ y = y \circ x$, le groupe est *commutatif* ou abélien. Dans ce cas, en général, la loi est notée +.

Exemples 1.3. 1. $(\mathbb{Z}/n\mathbb{Z}, +)$, (\mathbb{Q}^*, \times) , $(\mathbb{Z}, +)$ sont abéliens.

2. $(GL_m(\mathbb{C}), \times)$ et (S_n, \circ) sont non abéliens.

Remarque 1.4. Si G est un groupe, alors on a : $\forall a, n, b \in G$

et

$$a.n = a.y \Leftrightarrow n = y,$$

 $n.a = y.a \Leftrightarrow n = y.$

Définition 1.5. On appelle ordre du groupe G le cardinal du groupe G. On note $|G| = \operatorname{card}(G)$.

1.2 Structure induite

Définition 1.6. Étant donné un groupe (G, \circ) , un sous-groupe de G est la donnée d'un sous-ensemble H de G tel que H muni de la loi induite (ou restriction) de G à H soit un groupe, c'est-à-dire :

- $-H \times H \rightarrow G$ soit à valeurs dans H.
- passage à l'inverse :

$$\begin{array}{ccc} H & \mapsto & G \\ n & \rightarrow & n^{-1} \end{array}$$

- soit à valeurs dans H,
- $-1 \in H \text{ (en particulier } H \neq \emptyset).$

Proposition 1.7. Si G est un groupe, $H \subset G$ est un sous-groupe si et seulement si :

- 1. $\forall x, y \in H, x.y^{-1} \in H$,
- 2. $H \neq \emptyset$.

Remarque 1.8. Les sous-groupes triviaux de G sont G et 1.

Proposition 1.9. L'intersection d'une famille $(H_i)_{i\in I}$ de sous-groupes d'un groupe G est un sous-groupe de G.

Démonstration. Soit $H = \bigcap_{i \in I} H_i$.

- $-H\subset G$
- $-H \neq \emptyset \text{ car } 1 \in H_i \quad \forall i \in I$
- Soient x, y. Par définition de H, $x, y \in H_i$, $i \in I$, d'où $xy^{-1} \in H_i$, $i \in I$. (car H_i sousgroupe de G) c'est-à-dire $xy^{-1} \in H$.

Définition 1.10. Soient (G, \circ) un groupe et $S \subset G$ sous-ensemble. Alors l'intersection de tous les sous-groupes de G qui contiennent S est un sous-groupe de G qui contient S. On l'appelle les sous-groupe de G engendré par S et on le note $S \subset G$ est le plus petit sous-groupe de G qui contient S.

Proposition 1.11. On a

$$\langle S \rangle = \{g_1^{n_1} \dots g_s^{n_s}, g_i \in S, s \in \mathbb{N}, n_1, \dots, n_s \in \mathbb{Z} \setminus \{0\}\}.$$

Démonstration. Montrons que $\langle S \rangle = H_s$.

- $-H_s$ est un sous-groupe de G
 - 1. $H_s \subset G$,
 - 2. $H_s \neq \emptyset$,
 - 3. stabilité.
- $H_s \supset S$ car si $g \in S$, on peut écrire $g = g^{-1}$, d'où $\langle S \rangle \subset H_s$ car on sait que $\langle S \rangle$ est le plus petit sous-groupe. Si $g_1 \ldots g_s \in S \subset \langle S \rangle$ et $n_1, \ldots, n_s \in \mathbb{Z} \setminus \{0\}$, alors $g_1^{n_1} \ldots g_s^{n_s} \in \langle S \rangle$, d'où $H_s \subset \langle S \rangle$ est un sous-groupe.

Remarques 1.12. 1. $<\emptyset>=\{1\}$

- 2. On dit qu'un groupe G est :
 - de type fini s'il existe $S \subset G$ fini tel que $G = \langle S \rangle$.
 - monogène s'il existe $g \in G$ tel que $G = \langle g \rangle$, soit $G = \{g^n, n \in \mathbb{Z}\}$.
 - Si de plus, G est fini, alors il est dit cyclique.

Définition 1.13. Si G est un groupe et $g \in G$, alors on appelle ordre de g le nombre | < g > |.

Théorème 1.14 (Théorème de Lagrange). Soient G un groupe fini et H un sous-groupe de G. On a |H| divise |G|.

Démonstration. Les classes à droite de G modulo un sous-groupe H sont telles que, pour $x,y\in G$, on pose $x\sim y$ si $yx^{-1}\in H$, qui est une relation d'équivalence. La classe d'équivalence de x est alors :

$$\overline{x} = \{ y \in G, \ yx^{-1} \in H \} \iff yx^{-1} = h \in H$$

$$\iff y = hx, \ h \in H$$

$$\iff y \in Hx = \{ h.x, \ h \in H \}.$$

Donc $\overline{x} = H.x.$

Exemples 1.15. 1. $g\mathbb{Z} = \overline{1} = 1 + g\mathbb{Z}$

2. Montrer que la preuve par g correspond à compter modulo g, c'est-à-dire dans la situation $g\mathbb{Z}\subset\mathbb{Z}$.

Lemme 1.16. Si G et fini, alors $\forall x \in G$, card(H.x) = |H|.

Démonstration. L'application

$$\begin{array}{ccc} H & \mapsto & Hx \\ h & \to & hx \end{array}$$

est bijective. On dit que Hx, H, et xH sont équipotents.

Preuve du théorème de Lagrange. Les classes à droite de G modulo H forment une partition de G, d'où

|G| = somme des cardinaux des classes d'équivalences \Rightarrow |G| = {nombre de classes} \times |H|.

Proposition 1.17. Soit G un groupe et x un élément de G d'ordre fini n. Alors n est le plus petit entier > 0 tel que $x^n = 1$.

Démonstration. Par définition, $n = |\langle x \rangle| = |\{x^m, m \in \mathbb{Z}\}|$. Comme $\langle x \rangle$ est fini, il existe $m, m' \in \mathbb{Z}$, m < m' tel que $x^m = x^{m'}$. On a alors $x^{m'-m} = 1$. Considérons l'ensemble

$$\mathcal{N} = \{ h \in \mathbb{N} / h \neq 0, \, x^h = 1 \}.$$

On a:

- $-\mathcal{N}\subset\mathbb{N}\setminus\{0\}.$
- $-\mathcal{N} \neq \emptyset \text{ car } m'-m \in \mathbb{N}.$

On note ν son plus petit élément. Il s'agit donc de montrer que $m=\nu$. Si $h\in\mathcal{N}$ alors $x^h=1$. On fait la division euclidienne de h par ν , c'est-à-dire $h=\nu q+r$, avec $0\leqslant r<\nu$. On a alors :

$$x^{h} = x^{\nu q + r} = (x^{\nu})^{q}.x^{r}$$

= 1. $x^{r} = x^{r}$,

d'où $x^r = 1$ et $r < \nu$. Impossible. Ce qui entraı̂ne r = 0 donc ν divise h. On en déduit : pour $h, h' \in \mathbb{Z}$ tels que $h' \geqslant h$, on a :

$$x^h = x^{h'} \iff x^{h'-h} = 1 \iff \nu | h' - h,$$

$$n = |\{x^h, \quad h \in \mathbb{Z}\}| = \text{(nombre de puissance de } x \text{ distinctes)},$$

$$\langle x \rangle = \{1, x, x^2, ..., x^{\nu-1}\}.$$

Conclusion : $|\langle x \rangle| = \nu$, c'est-à-dire $n = \nu$.

Remarque 1.18. Pour tout $q \in G$, l'ordre de q divise celui de G, en particulier $q^{|G|} = 1$.

Définition 1.19. Soient G un groupe et H un sous-groupe de G (H < G). On note [G : H] l'indice de H dans G:

 $[G:H] = \frac{\operatorname{card}(G)}{\operatorname{card}(H)}.$

Théorème 1.20. Dans un groupe, l'intersection d'un nombre fini de sous-groupes d'indices finis est un sous-groupe d'indice fini.

$$(H_1 \cap H_2)_x = H_{1x} \cap H_{2x} \Rightarrow [G: H_1 \cap H_2] \leqslant [G: H_1][G: H_2].$$

Théorème 1.21 (Formule des indices). Si H est un sous-groupe d'indice fini dans un groupe G et si K est un sous-groupe de G contenant H, alors K est d'indice fini dans G et :

$$[G:H] = [G:K][K:H].$$

1.3 Morphisme de groupe

Définition 1.22. On appelle et on note $\text{Hom}(G_1, G_2)$, morphisme (ou homomoprhisme) de groupe entre deux groupes G_1 et G_2 l'application :

$$\begin{array}{cccc} f & : & G_1 & \to & G_2 \\ & f(x.y) & \mapsto & f(x).f(y) \end{array}.$$

En particulier:

$$f(1_{G_1}) = 1_{G_2},$$

 $f(x^{-1}) = f(x)^{-1}.$

Exemples 1.23. 1. $a \in (\mathbb{Z}, +, 0), n \in \mathbb{Z}$. Alors :

$$\phi_a : \mathbb{Z} \to \mathbb{Z}$$

$$n \mapsto an$$

est un morphisme.

2. (G, \circ) pour $g \in G$.

$$\varphi_g : (\mathbb{Z}, +) \to (G, \circ)$$

$$n \mapsto g^n :$$

$$\varphi_g(n+m) = g^{m+n} = g^n \cdot g^m = \varphi_{g(n)} \cdot \varphi_{g(m)} \cdot$$

3.

$$\det : (\mathrm{GL}_n(\mathbb{C}), \circ) \to (\mathbb{C}^*, \times) A \mapsto \det A.$$

4. L'application signature :

$$(\mathcal{S}_n, \times) \mapsto (\{1, -1\}, \times)$$
 $\omega \to \sigma(\omega)$

Définition 1.24. On appelle endomorphisme d'un groupe G, un morphisme (ou un homomorphisme) $f: G \to G$. On note $\operatorname{End}(G)$, l'ensemble des endomorphismes du groupe G.

Définition 1.25. Un automorphisme d'un groupe G est un endomorphisme bijective de G. On note Aut(G), l'ensemble des automorphismes du groupe G.

Définition 1.26. L'ensemble des monomorphismes de G_1 vers G_2 est défini comme suivant :

$$Mono(G_1, G_2) = \{ f \in Hom(G_1, G_2) \text{ tel que } f \text{ injective} \}.$$

Définition 1.27. On définit l'ensemble des épimorphismes :

$$\operatorname{Epi}(G_1, G_2) = \{ f \in \operatorname{Hom}(G_1, G_2) \text{ tel que } f \text{ surjective} \}.$$

Proposition 1.28. $Si \ f \in \text{Hom}(G_1, G_2) \ et$

- 1. Si $H_1 < G_1$, alors $f(H_1) < G_2$.
- 2. Si $H_2 < G_2$, alors $f^{-1}(H_2) < G_1$.

Cas particulier:

- (a) Soit $H_1 = G_1$, on appelle groupe image de f, $f(G_1)$.
- (b) Soit $H_2 = \{1\}$, on appelle noyau de f et on note Ker(f), $f^{-1}(\{1\})$.

Démonstration. 1. en exercice

$$f^{-1}(H_2) \subset G_1 \xrightarrow{f} G_2 \supset H_2.$$

2.

$$f^{-1}(H_2) = \{ g \in G_1 | f(g) \in H_2 \}$$

$$f^{-1}(H_2) < G_1$$

et égalité ssi f est bijective.

- I/ $f^{-1}(H_2) \subset G_1$ (par construction).
- II/ $1_{G_1} \in f^{-1}(H_2)$ car $f(1_{G_1}) \in H_2$ alors $f^{-1}(H_2) = (f^{-1})(H_2)$, image pas réciproque.
- III/ Soient $g, h \in f^{-1}(H_2)$. Alors $f(gh) = f(g)f(h) \in H_2$, donc $gh \in f^{-1}(H_2)$.

IV/ Si
$$g \in f^{-1}(H_2)$$
, $f(g^{-1}) = f(g)^{-1}$; d'où $g^{-1} \in f^{-1}(H_2)$.

Proposition 1.29. $Si \ f \in Hom(G_1, G_2)$, alors

- 1. f est surjective $\Leftrightarrow f(G_1) = G_2$.
- 2. f injective $\Leftrightarrow \operatorname{Ker}(f) = \{1_{G_1}\}$

Démonstration. 1. Définition

2. Exercice

1.4 Structure produit direct

Définition 1.30. Soient G_1 et G_2 deux groupes. La loi sur $G_1 \times G_2$ définie par

$$(g_1, g_2) \times (g'_1, g'_2) \stackrel{\text{def}}{=} (g_1 g'_1, g_2 g'_2).$$

donne à $G_1 \times G_2$ une structure de groupe.

Définition 1.31. Les applications :

$$pr_1: G_1 \times G_2 \rightarrow G_1 \ (g_1, g_2) \mapsto g_1 \ et \ pr_2: G_1 \times G_2 \rightarrow G_2 \ (g_1, g_2) \mapsto g_2 \ sont surjectives,$$

et

$$i_1: G_1 \rightarrow G_1 \times G_2$$
 et $i_2: G_2 \rightarrow G_1 \times G_2$ $sont injectives.$

Ce sont des morphismes de groupes (vérification en exemples).

Définition 1.32. Cette construction du produit se généralise au produit de n groupes, $G_1, ..., G_n$, et même d'une famille $(G_i)_{i \in I}$ avec

$$(g_i)_{i \in I} \times (h_i)_{i \in I} \stackrel{\text{def}}{=} (g_i h_i)_{i \in I}.$$

Le produit des groupes G_i où $i \in I$ se note $\prod_{i \in I} G_i$.

Exemple 1.33.

$$\prod_{n\in\mathbb{N}}\mathbb{R}=\{\text{suites r\'eelles}\}=\mathbb{R}^{\mathbb{N}}.$$

1.5 Structure quotient

Définition 1.34. Soit G un groupe. H sous-groupe de G. On définit deux relations sur G:

1. Pour $g, h \in G$,

$$g \sim_g h \ si \ h^{-1}g \in H.$$

2. Pour $g, h \in G$,

$$g \sim_d si gh^{-1} \in H.$$

Ce sont des relations d'équivalence.

Remarque 1.35. Si $h^{-1}g \in H$,

$$(h^{-1}g)^{-1} = g^{-1}h \in H.$$

Définition 1.36. On définit la classe de x, \overline{x} :

$$\overline{x} = \{ h \in G | h \sim_g x \} = \{ h \in G | x^{-1}h \in H \} = \{ h \in G | h \in xH \}.$$

Les classes à gauche sont les sous-ensembles xH où $x \in G$. Les classes à droite sont les sous-ensembles Hx où $x \in G$.

Remarque 1.37.

$$xH = yH \Leftrightarrow x \sim_g y \Leftrightarrow y^{-1}x \in H.$$

On pose:

$$G/.H = \{xH, x \in G\}$$
 (ensemble des classes à gauche),
 $G/H. = \{Hx, x \in G\}$ (ensemble des classes à droite).

Remarque 1.38. Si G est abélien, xH = Hx.

Soient g_1H , $g_2H \in G/.H$. $g_1Hg_2H = \{g_1hg_2k|h \in H, k \in H\}$ n'est pas en général de la forme g_1g_2H (ou même gH avec $g \in G$). Ce n'est pas un élément de G/.H.

Définition 1.39. Le sous-groupe H est dit normal (ou distingué ou invariant) dans G si pour tout sous-groupe H de G, pour tout $h \in H$ et tout $g \in G$, on a $ghg^{-1} \in H$. On note : $H \triangleleft G$.

Remarque 1.40. Si G est abélien, $ghg^{-1} = h \in H$. Donc tout sous-groupe est distingué,

Propriété 1.41. Si $H \triangleleft G$, les classes à droite coïncident avec les classes à gauche : xH = Hx $(\forall x \in G)$.

Démonstration. Soit $xh \in xH$, $(h \in H)$.

$$xh = \underbrace{xhx^{-1}}_{\text{dans } H \text{ car } H \triangleleft G} x \in Hx,$$

donc $xH \subset Hx$.

1.

$$g_1 H g_2 H = g_1 (H g_2) H$$

= $g_1 (g_2 H) H$
= $g_1 g_2 H H = g_1 g_2 H$. $(HH = H)$

2.

$$(gH)^{-1} = H^{-1}g^{-1}$$

= $Hg^{-1} = g^{-1}H$.

On pose:

$$G/.H = G/H. = G/H$$

On a une loi de groupe sur G/H (qui provient de celle de G) : $g_1H \circ g_2H = g_1g_2H$.

Définition 1.42. L'application

$$\begin{array}{ccc} G & \mapsto & G/H \\ g & \to & gH \end{array}$$

est un morphisme surjectif qu'on appelle surjection canonique.

Exemples 1.43. 1. Pour $(\mathbb{Z}, +)$, les sous-groupes sont les $n\mathbb{Z}$ $(n \in \mathbb{N})$. Ils sont distingués, d'où le groupe quotient $\mathbb{Z}/n\mathbb{Z}$.

2. Pour (\mathcal{S}_d, \circ) , on définit :

$$\mathcal{A}_d = \{ \omega \in \mathcal{S}_d \, | \, \Sigma_d(\omega) = 1 \}.$$

où S_d est l'application signature définie aux exemples 1.23 et 1.46. On a ainsi :

$$-\mathcal{A}_d < \mathcal{S}_d$$

$$-\mathcal{A}_d \triangleleft \mathcal{S}_d$$
: si $\omega \in \mathcal{A}_d$ et $g \in \mathcal{S}_d$, alors $\Sigma(g\omega g^{-1}) = \Sigma(g)\Sigma(\omega)\Sigma(g)^{-1} = 1$.

On a :
$$S_n/A_n = \{+1, -1\}.$$

Définition 1.44. On dit que G_1 et G_2 sont isomorphes si on peut trouver un isomorphisme f (un morphisme bijective) tel que $f: G_1 \to G_2$. On note $G_1 \simeq G_2$ si G_1 et G_2 sont isomorphes.

Proposition 1.45. Si $f \in \text{Hom}(G, G')$, alors $\text{Ker}(f) \triangleleft G$ et $G/\text{Ker}(f) \simeq f(G)$.

Exemple 1.46. Soit σ l'application signature :

$$\sigma: \mathcal{S}_n \to \{\pm 1\},$$

$$- \mathcal{A}_n \triangleleft \mathcal{S}_n, - \mathcal{S}_n / \mathcal{A}_n \simeq \sigma(\mathcal{S}_n) = \{\pm 1\}.$$

Démonstration. On veut montrer que $\operatorname{Ker}(f) \triangleleft G$: soient $h \in \operatorname{Ker} f$ et $g \in G$. On veut ainsi montrer que $ghg^{-1} \in \operatorname{Ker}(f)$.

$$f(ghg^{-1}) = f(g)\underbrace{f(h)}_{=1} f(g)^{-1} = f(g)f(g)^{-1} = 1.$$

Donc: $ghg^{-1} \in \text{Ker } f$.

On a construit $\overline{f} \in \text{Isom}(G/\text{Ker}(f), f(G))$, avec $i \circ \overline{f} \circ s = f$. On pose

$$\overline{f}(x \operatorname{Ker}(f)) \stackrel{\text{déf}}{=} f(x).$$

Les problèmes sont :

- 1. si $x \operatorname{Ker}(f) = y \operatorname{Ker}(f)$, a-t-on f(x) = f(y)?
- 2. La définition dépend-elle du nombre de représentants de la classe?

La réponse est oui car :

$$x \operatorname{Ker}(f) = y \operatorname{Ker}(f) \Leftrightarrow x^{-1}y \in \operatorname{Ker}(f) \Leftrightarrow f(x^{-1}y) = 1 \Leftrightarrow f(x)^{-1}f(y) = 1 \Leftrightarrow f(y) = f(x).$$

- Soit $q \in G$.

$$(i \circ \overline{f} \circ s)(g) = i \circ \overline{f}(s(g)) = i \circ \overline{f}(g \operatorname{Ker}(f)) = i(f(g)) = f(g).$$

- Surjectivité de \overline{f} : Soit f(g) un élément quelconque de f(G), $f(g) = \overline{f}(g\operatorname{Ker}(f))$.
- Injectivité : Soit $g \operatorname{Ker}(f)$ un élément quelconque de $G/\operatorname{Ker} f$, tel que $\overline{f}(g \operatorname{Ker}(f)) = 1$. On veut savoir si \overline{f} est injective, soit :

$$g \operatorname{Ker}(f) = 1 \operatorname{Ker}(f) = \operatorname{Ker}(f).$$

On a :
$$f(g) = 1$$
 donc $g \in \text{Ker}(f)$. $g1^{-1} \in \text{Ker}(f)$. $g \sim 1$, c'est-à-dire $g \text{Ker}(f) = 1 \text{Ker}(f)$.

Remarque 1.47. $g \in H \Leftrightarrow g$ est dans la classe de 1.

Proposition 1.48. Soit $f \in \text{Hom}(G, G')$ et H < Ker(f) tel que $H \triangleleft G$. Alors:

$$G \xrightarrow{f} G' .$$

$$\downarrow^{s} \qquad \downarrow^{s} \qquad \downarrow^{s}$$

$$G/H \xrightarrow{\overline{f}} f(G)$$

- $\begin{array}{ll} -\underline{f}=i\circ\overline{f}\circ s.\\ -\overline{f}(G/H)=f(G) \end{array}$
- $-\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/H$

Il existe $\overline{f} \in \text{Hom}(G/H, f(G))$ tel que $f = i \circ \overline{f} \circ s$. On dit que « f se factorise à travers G/H ».

Exemple 1.49. Soit le diagramme suivant :

$$\mathbb{Z} \xrightarrow{f} \mathbb{Z}/2\mathbb{Z} .$$

$$\downarrow^{s} \overline{f} / \mathbb{Z}/6\mathbb{Z}$$

Alors $\operatorname{Ker}(f) = 2\mathbb{Z}$, soit $H = 6\mathbb{Z}$, $H = 6\mathbb{Z} \subset 2\mathbb{Z}$.

Remarque 1.50. Pour H = Ker(f), on obtient

$$G \xrightarrow{f} G'$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

avec $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/\operatorname{Ker}(f) = \{1\}$, c'est-à-dire \overline{f} est surjective donc $f(G): G/\operatorname{Ker}(f) \to$ f(G).

Démonstration. On pose $\overline{f}(gH) = f(g)$.

- On vérifie que \overline{f} est bien définie donc on veut savoir si $gH = g'H \Rightarrow f(g) = f(g')$. Si gH = g'H, alors $g^{-1}g' \in H \subset \text{Ker}(f)$. Donc $f(g^{-1}g') = 1$ d'où f(g) = f(g'),
- $-f(G)=\overline{f}(G/H)$
- $-i \circ f \circ s = f.$

Soit $g \in G$.

$$i \circ \overline{f} \circ s(g) = i \circ \overline{f}(gH) = i(f(g)) = f(g).$$

 $\operatorname{Ker}(\overline{f})$. Soit $gH \in G/H$. On veut savoir à quelle condition $\overline{f}(gH) = 1_G$?

$$\overline{f}(gH) = f(g) = 1 \Leftrightarrow g \in \operatorname{Ker}(f) \Leftrightarrow gH \in \underbrace{\{kH, k \in \operatorname{Ker}(f)\}}_{\text{déf. de } \operatorname{Ker}(f)/H}$$

donc
$$Ker(\overline{f}) = Ker(f)/H$$
.

Théorèmes d'isomorphisme

Théorème 1.51 (Premier théorème d'isomorphisme). Soit H et K deux sous-groupes de G et $H \triangleleft G$ alors :

- $-HK = KH = < H \cup K >$
- $H \triangleleft KH \ et \ H \cap K \triangleleft K$
- $-KH/H \simeq K/H \cap K$.

Démonstration. – Il est toujours vrai que :

$$HK \subset < H \cup K >$$

 $KH \subset < H \cup K >$.

- Soit $h \in H$ et $k \in K$.

$$hk = \underbrace{k}_{\in K} \underbrace{k^{-1}hk}_{\in H} \in KH.$$

D'où $HK \subset KH$, de même $KH \subset HK$.

– On montre que HK est un sous-groupe de G. Soient $h, h' \in H$ et $k, k' \in K$.

$$hkh'k' = h(kh')k' = h(h''k'')k',$$

donc HK est stable. Soit $h \in H$, et $k \in K$.

$$(hk)^{-1} = k^{-1}h^{-1} \in KH = HK.$$

Donc HK < G.

$$\left. \begin{array}{l} H \subset HK \\ K \subset HK \end{array} \right\} \text{ d'où } < H \cup K > \subset HK.$$

- On a : $H \triangleleft HK$ car $H \triangleleft G$. Pour montrer que $H \cap K \triangleleft K$, soit $x \in H \cap K$ et $k \in K$. Ainsi $kxk^{-1} \in K$ car $x, k \in K$ et $kxk^{-1} \in H$ car $x \in H \triangleleft G$. Donc $kxk^{-1} \in H \cap K$ et donc $H \cap K \triangleleft K$.
- On part de l'injection canonique qu'on compose avec la surjection canonique.

$$K \xrightarrow{i} KH .$$

$$\downarrow^s$$

$$KH/H$$

 $-s \circ i$ est surjective : soit khH un élément de KH/H. On a

$$khH = kH \quad (h \in H)$$

= $s(k)$.

- Noyau de $s \circ i$: soit $k \in K$. On a

$$s \circ i(k) = 1_{KH/H} = H \Leftrightarrow kH = H \Leftrightarrow k \in H,$$

d'où
$$\operatorname{Ker}(s \circ i) = \{k \in K | k \in H\} = H \cap K.$$

Conclusion: $K/\operatorname{Ker}(s \circ i) \simeq s \circ i(K)$ donne

$$K/H \cap K \simeq KH/H$$
.

Théorème 1.52 (Second théorème d'isomorphisme). Soit H_1, H_2 deux sous-groupes de G tel que $H_1 \subset H_2$ et $H_1 \subset G$, $H_2 \triangleleft G$, alors¹

$$G/H_2 \simeq (G/H_1)/(H_2/H_1),$$

ce qui sous-entend que $H_2/H_1 \triangleleft G/H_1$.

Démonstration. $H_2/H_1 \triangleleft G/H_1$. On définit :

$$s: G \to G/H_2$$

la surjection canonique. On a :

$$G/H_2 = s(G), \quad H_2/H_1 = s(H_2).$$

En particulier $H_2/H_1 < G/H_1$. De plus, si $gH_2 \in G/H_2$ et $h_2H_1 \in H_2/H_1$,

$$gH_1h_2H_1(gH_1)^{-1} \in H_2/H_1.$$

Comme s est un morphisme peut-on écrire que c'est $s(gh_2g^{-1}) \in H_2/H_1$? Oui car $gh_2g^{-1} \in H_2$ $(H_2 \triangleleft G)$.

- On part de

$$G \xrightarrow{s_2} G/H .$$

$$\downarrow^{s_1} \xrightarrow{\overline{s_2}} G/H_1$$

 $\overline{s_2}$ existe d'après la proposition 1.48, on a bien $H_1 \subset Ker(s_2) = H_2$.

$$\overline{s_2}(G/H_1)=s_2(G)=G/H_2 \text{ et } \mathrm{Ker}(\overline{s_2})=\mathrm{Ker}(s_2)/H_1=H_2/H_1,$$
 d'où $(G/H_1)/(H_2/H_1)\simeq G/H_2.$

Exemples 1.53. Soient $G = \mathbb{Z}$, $H = m\mathbb{Z}$, $K = n\mathbb{Z}$. Alors

$$H \cap K = m\mathbb{Z} \cap n\mathbb{Z} = \mu\mathbb{Z}$$
 où $\mu = \text{PPCM}(m, n)$,
 $HK = m\mathbb{Z} + n\mathbb{Z} = \delta\mathbb{Z}$ avec $\delta = \text{PGCD}(m, n)$,

d'où $\delta \mathbb{Z}/m\mathbb{Z} \simeq n\mathbb{Z}/\mu\mathbb{Z}$. Si $d|n, d\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/nd^{-1}\mathbb{Z}$. En particulier,

$$\frac{m}{\delta} = \frac{\mu}{n} \Leftrightarrow mn = \delta\mu.$$

 $^{^{1}}H_{1} \triangleleft H_{2}$, évident

Solution.

$$\mathbb{Z} \xrightarrow{\mu} d\mathbb{Z}$$

$$x \longrightarrow dx$$
 dx

$$\downarrow^s \qquad \qquad \downarrow$$

$$d\mathbb{Z}/n\mathbb{Z} \qquad \text{classe de } dx \mod r$$

 μ et s sont surjectives donc $s \circ \mu$ aussi. On cherche $\operatorname{Ker}(s \circ \mu)$.

$$s \circ \mu(x) = 0, \qquad x \in \mathbb{Z}.$$

$$s(dx) = 0 \iff dx$$
 est divisible par n
 \iff il existe $h \in \mathbb{Z}$ tel que $dx = nh$
ce qui donne $x = nhd^{-1}$,

d'où
$$Ker(s \circ \mu) = nd^{-1}\mathbb{Z}$$
.

Propriété 1.54 (Sous-groupes de G/H). Soit G un groupe et $H \triangleleft G$, alors les sous-groupes de G/H sont les groupes K/H où K est un sous-groupe de G qui contient H.

Exemple 1.55. Les sous-groupes de $\mathbb{Z}/6\mathbb{Z}$ sont $n\mathbb{Z}/6\mathbb{Z}$ avec $n\mathbb{Z} \supset 6\mathbb{Z}$ (c'est-à-dire n|6), c'est-à-dire

$$\mathbb{Z}/6\mathbb{Z}$$
, $\{0\}$, $2\mathbb{Z}/6\mathbb{Z}$, $3\mathbb{Z}/6\mathbb{Z}$.

Démonstration. On introduit la surjection canonique $s: G \longrightarrow G/H$. Si K est un sous-groupe de G contenant H alors K/H = s(K) est un sous-groupe de G/H. Soit \mathcal{H} un sous-groupe de G/H.

$$s: G \longrightarrow \underbrace{G/H}_{\supset \mathcal{H}}.$$

On pose $K = s^{-1}(\mathcal{H})$. On a alors:

- -K < G,
- $-K = s^{-1}(\mathcal{H}) \supset s^{-1}(\{1\}) = \text{Ker}(s),$
- $-K/H = \mathcal{H}^2 = s(s^{-1}(\mathcal{H})), \text{ d'où } \mathcal{H} = s(K) = K/H.$

1.6 Groupes monogènes

Définition 1.56. Un groupe monogène est un groupe contenant un élément a tel que, pour tout élément x du groupe, il existe un entier n vérifiant $x = a^n$.

Exemples 1.57. 1. $\mathbb{Z} = <1>$,

- ² Pour une application f, on a toujours les inclusions suivantes :
- $f(f^{-1}(A)) \subset A$ et égalité si f surjective,
- $-f^{-1}(f(A)) \subset A$, et égalité si f injective.

 donc

- (\subset) vrai car s est surjective,
- (⊃) toujours vrai.

2. $\mathbb{Z}/n\mathbb{Z} = <\overline{1}>$.

Proposition 1.58. 1. Un groupe monogène infini est isomorphe à \mathbb{Z} .

2. Un groupe cyclique est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ où n = |G|.

Démonstration. Soit G un groupe monogène, soit g un générateur de $G = \langle g \rangle$. L'application

$$\varphi : \mathbb{Z} \to G = \langle g \rangle$$

$$h \mapsto g^h$$

est:

- un morphisme,
- surjective car $G = \langle g \rangle = \{g^h | h \in \mathbb{Z}\}$

On cherche $\operatorname{Ker}(\varphi)$: c'est un sous-groupe de \mathbb{Z} de la forme $a\mathbb{Z}$, d'où $\mathbb{Z}/a\mathbb{Z} \simeq G$.

- Si $a \neq 0$, G est fini donc cyclique et d'ordre a.
- Si a = 0, $G \simeq \mathbb{Z}/0\mathbb{Z}$, G infini.

Proposition 1.59. Soit G un groupe cyclique d'ordre n:

- 1. Si H sous-groupe de G, alors H et G/H sont cycliques.
- 2. $d|n \Leftrightarrow il$ existe un unique sous-groupe G_d de G d'ordre d, quotient Q_d de G d'ordre d.
- 3.

$$|G/H| = d \iff |G||H|^{-1} = d$$

 $\iff H \text{ est un sous-groupe de } G \text{ d'ordre } n/d$
 $\iff G/H = G/G_{n/d} = G_d.$

Démonstration. 1. en exercice.

- 2. (\Leftarrow) $|G_d| = d$ divise n = |G|, d'après le théorème 1.14 de Lagrange.
 - (\Rightarrow) Soit g un générateur de G et φ le morphisme :

$$\begin{array}{cccc} \varphi & : & \mathbb{Z} & \to & G \\ & m & \mapsto & g^m \end{array}.$$

Existence : Si $m|n, g^m$ d'ordre $\frac{n}{m}$ donc $< g^{n/d} >$ est un sous-groupe d'ordre d car n/d divise n.

Unicité: Soit $H \subset G$ d'ordre d. On a

$$H = \varphi(\varphi^{-1}(H))^3$$
 car φ est surjectif,
= $\varphi(a\mathbb{Z}) = \{g^{ah} | h \in \mathbb{Z}\} = \langle g^a \rangle$.

On obtient en particulier que H est cyclique. D'autre part,

$$\varphi^{-1}(H) = a\mathbb{Z} \supset \varphi^{-1}(\{1\}) = \{\text{multiple de l'ordre de } g\} = n\mathbb{Z},$$

c'est-à-dire a divise |G| et alors H d'ordre $\frac{n}{a}=d$.

Conclusion: Nécessairement $H=\varphi(nd^{-1}\mathbb{Z}).$

 $^{{}^3\}varphi^{-1}(H)$ est un sous-groupe de \mathbb{Z} donc de la forme $a\mathbb{Z}$.

Proposition 1.60 (Isomorphismes). 1. $f \in \text{Hom}(G, G')$ et f bijectif $\Leftrightarrow f$ isomorphisme.

2. f est un isomorphisme $\Rightarrow f^{-1}$ isomorphisme.

Définition 1.61. Si E est non vide, on note $\mathfrak{S}(E)$, le groupe symétrique de E qui est l'ensemble des applications bijectives de E dans E.

Lemme 1.62. Si E est équipotent à E'^4 alors $\mathfrak{S}(E) \simeq \mathfrak{S}(E')$.

Démonstration.

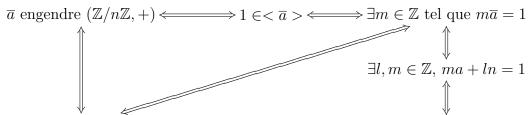
$$\begin{array}{ccc} \mathfrak{S}_E & \mapsto & \mathfrak{S}_{E'} \\ \sigma & \to & f \circ \sigma \circ f^{-1} \end{array},$$

(f est une bijection de E sur E').

Indicateur d'Euler:

Soit n > 0, $n \in \mathbb{N}$ fixé, $a \in \mathbb{Z}$ et

 $\overline{a} =$ classes de $a \mod n$.



 \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ pour $\times \longleftrightarrow a$ et n sont premiers entre eux

Conclusion:

{générateurs de
$$(\mathbb{Z}/n\mathbb{Z}, +)$$
} = {classe d'entiers > 0 premiers à n et $\leq n$ } \iff {inversibles de $(\mathbb{Z}/n\mathbb{Z}, \times)$ }

On note $\varphi(n)$ le nombre d'éléments de ces ensembles.

1.7 Automorphismes intérieurs, groupes simples

Définition 1.63. Soient G un groupe et $g \in G$. L'application

$$\begin{array}{cccc} C_g & : & G & \to & G \\ & x & \mapsto & gxg^{-1} \end{array}$$

est

- un morphisme $(gxyg^{-1} = gxg^{-1}gyg^{-1}),$
- bijectif $((C_g)^{-1} = C_{g^{-1}})$.

C'est donc un automorphisme, appelé conjugaison par g. Ces automorphismes sont appelés automorphismes intérieurs. On note $\mathrm{Int}(G)$ leur ensemble.

Proposition 1.64. On $a \operatorname{Int}(G) < \operatorname{Aut}(G) \operatorname{car} C_{g_1} \circ C_{g_2} = C_{g_1g_2}$.

 $^{^{4}}$ c'est-à-dire qu'il existe une bijection de E à E'.

Plus précisément, l'application

$$\begin{array}{cccc} \Gamma & : & G & \to & \operatorname{Aut}(G) \\ & g & \mapsto & C_g \end{array}$$

est un morphisme et $\Gamma(G) = \text{Int}(G)$. Le noyeau de Γ , $\text{Ker}(\Gamma)$ est l'ensemble :

$$Z(G) = \{ g \in G, xg = gx, x \in G \},\$$

appelé centre de G. D'où aussi : $G/Z(G) \simeq \operatorname{Int}(G)$.

Remarque 1.65. Un sous-groupe H < G est distingué ssi pour tout $g \in G$, $C_g(H) \subset H$ ssi H est invariant par tout automorphisme intérieur. On dit que H est un sous-groupe caractéristique et on note $H \sqsubset G$ si H est invariant par tout automorphisme de G. Donc $H \sqsubset G \Rightarrow H \triangleleft G$.

Définition 1.66. Un groupe G est dit simple si ses seuls sous-groupes distingués sont G et $\{1\}$.

Exemple 1.67. $(\mathbb{Z}/n\mathbb{Z}, +)$ est simple si et seulement si n est premier.

Proposition 1.68. Tout groupe fini d'ordre premier p est cyclique.

Chapitre 2

Groupe opérant sur un ensemble

2.1 Groupe de permutations

Définition 2.1. Si X est un ensemble, l'ensemble

$$Per(X) = \{bijection/permutation : X \to X\}$$

est un groupe pour la composition. Si $X = \{1, ..., d\}$ alors

$$Per(X) = S_d$$
 (groupe symétrique d'ordre d)

est non abélien pour n > 2, en général.

Théorème 2.2 (Cayley). Tout groupe est isomorphe à un sous-groupe de permutation.

Démonstration.

est un morphisme injectif. Vérifions-le :

-
$$\gamma_{g_1g_2} = \gamma_{g_1} \circ \gamma_{g_2} \text{ car } g_1g_2x = g_1(g_2x),$$

- $\gamma_g = \text{id alors } g = 1,$

$$\underbrace{G/\{1\}}_{=G} \simeq \gamma(G) \subset \operatorname{Per}(G).$$

Remarque 2.3. γ représente les représentations régulières à gauche de G.

Définition 2.4. Pour $s \in Per(X)$, On définit le support de s:

$$supp(s) = \{x \in X, \ s(x) \neq x\}.$$

Remarque 2.5. s(supp(s)) = supp(s).

Démonstration. En effet,

 (\subset) Si $x \in \text{supp}(s)$ alors

$$s(x) \notin \text{supp}(s) \Leftrightarrow s(s(x)) = s(x)$$

 $\Leftrightarrow s(x) = x \Leftrightarrow x \notin \text{supp}(s)$

d'où (⊂).

 (\supset) On veut montrer que $\mathrm{supp}(s) \subset s(\mathrm{supp}(s))$. D'après la précédente inclusion,

$$s^{-1}(\operatorname{supp}(s^{-1}) \subset \operatorname{supp}(s^{-1}),$$

d'où $\operatorname{supp}(s^{-1}) \subset s(\operatorname{supp}(s^{-1}))$, c'est-à-dire $\operatorname{supp}(s) \subset s(\operatorname{supp}(s))$.

En conséquence, $s|_{\text{supp}(s)} \in \text{Per}(\text{supp}(s))$.

Définition 2.6. Pour $x \in X$, on pose $O_s(x) = \{s^n(x) | n \in \mathbb{Z}\}$, l'orbite de x sous s.

Remarque 2.7. Si $\{x_1, \ldots, x_n\}$ est une famille de représentants des σ -orbites, alors $\{O_s(x_i)\}_i$ forme une partition.

Si X est fini,

$$O_s(x) = \{x, s(x), \dots, s^{p-1}(x)\},\$$

où p est le plus petit entier > 0 tel que $s^p(x) = x$.

$$s|_{O_s(x)} = \begin{pmatrix} x & s(x) & \cdots & s^{p-1}(x) \\ s(x) & s^2(x) & \cdots & x \end{pmatrix}$$

permute les éléments de $O_s(x)$ de façon circulaire. On dit que c'est un cycle de longueur pour un p-cycle.

Définition 2.8. Un p-cycle de X est une permutation de X qui n'a qu'une orbite de longeur ≥ 2 .

On utilise la notation suivante : $(x_1 \ x_2 \ \dots \ x_p)$ veut dire que

- $-x_1 \rightarrow x_2 \ (x_1 \text{ s'envoie sur } x_2),$
- $-x_2 \rightarrow x_3 \ (x_2 \text{ s'envoie sur } x_3),$
- _ :
- $-x_p \rightarrow x_1 \ (x_p \text{ s'envoie sur } x_1).$

Exemples 2.9. Dans S_4 , $s:(1\ 2\ 3\ 4)$ est un cycle de longueur 4.

$$O_s(1) = \{1, 2, 3, 4\}, \qquad O_s(2) = \{2, 3, 4, 1\}$$

Soit maintenant

$$s = (1 \ 2) \circ (3 \ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}.$$

Alors

$$O_s(1) = O_s(2) = \{1, 2\}, \qquad O_s(4) = O_s(3) = \{3, 4\}.$$

Ce n'est donc pas un cycle.

Proposition 2.10. Soient deux permutations $s, s' \in Per(X)$ telles que $supp(s) \cap supp(s') = \emptyset$. Alors ces deux permutations commutent.

Démonstration. Soit $x \in X$.

 $- \operatorname{Si} x \in \operatorname{supp}(s)$

$$ss'(x) = s(x) \quad (\operatorname{car} x \in \operatorname{supp}(s) \Rightarrow x \notin \operatorname{supp}(s')),$$

 $s's(x) = s(x) \quad (\operatorname{car} x \in \operatorname{supp}(x) \Rightarrow s(x) \in \operatorname{supp}(s) \Rightarrow s(x) \notin \operatorname{supp}(s')).$

- Si $x \in \text{supp}(s')$, idem.

- Si
$$x \notin \text{supp}(s)$$
, $s \notin \text{supp}(s')$ alors $ss'(x) = x = s's(x)$.

Exemples 2.11. 1. $(1\ 2)(3\ 4) = (3\ 4)(1\ 2)$.

$$\begin{array}{c} (1\ 2\ 3)(2\ 3) = (1\ 2) \\ (2\ 3)(1\ 2\ 3) = (1\ 3) \end{array} \right\} \Rightarrow \operatorname{supp}(x) \cap \operatorname{supp}(s') = \emptyset.$$

2.

$$s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 4 & 5 & 10 & 7 & 1 & 2 & 3 & 8 & 9 \end{pmatrix} = (1 \ 6)(2 \ 4 \ 10 \ 9 \ 8 \ 3 \ 5 \ 7)$$
$$= (2 \ 4 \ 10 \ 9 \ 8 \ 3 \ 5 \ 7)(1 \ 6)$$

Théorème 2.12. Soit X fini. Tout élément $s \in Per(X)$ s'écrit sous la forme $s = p_1 \dots p_i$, où les p_i sont des cycles à supports disjoints. De plus l'écriture est unique à l'ordre près.

Démonstration. Existence : pour $x, y \in X$, on pose $x \sim y$ s'il existe $n \in \mathbb{Z}$ tel que $y \in s^n(x)$. \sim est une relation d'équivalence (le montrer). Pour $x \in X$, la classe de $x \equiv O_s(x)$. Les orbites $O_s(x)$ sont soit égales, soit disjointes. Notons O_1, \ldots, O_r les orbites de longueur ≥ 2 et posons $s|_{O_i} = p_i$. c'est un cycle de longueur card (O_i) . On a $s = p_1, \ldots, p_r$ vérifiant : soit $x \in X$. Si $s(x) \neq x$, alors $x \in O_i$ pour un certain $i, s^i(x) = s(x)$.

$$p_1, \ldots, p_r(x) = p_i(x) = s|_{O_i(x)} = s(x).$$

Si s(x) = x, alors $x \notin \bigcup_{i=1}^r O_i$, $p_1 \dots p_r(x) = x$, s(x) = x.

Unicité : supposons $s = p_1 \dots p_r$ comme dans l'énoncé. On a $s|_{\text{supp}(p_i)} = p_i$. Si $x \in \text{supp}(p_i)$, $O_s(x) = \text{supp}(p_i)$.

Conclusion: si $s = p_1 \dots p_r$, alors $p_i = s|_{O(x)}$ où $x \in \text{supp}(s)$.

Remarque 2.13. $(x_1, x_2, \dots, x_n) = (x_1, x_2)(x_2, x_3) \dots (x_{n-1}, x_n)$.

Conséquence 2.14. S_d est engendré par les 2-cycles (appelés aussi les transpositions).

Définition 2.15.

 $\mathcal{A}_d = \{s \in \mathcal{S}_d, \ s \ s'\'{e}crit \ comme \ produit \ d'un \ nombre \ pair \ de \ transpositions\}.$

Exemple 2.16. A_d est engendré par les 3-cycles $(d \ge 3)$.

Théorème 2.17. Il existe un unique morphisme (non trivial) $\varepsilon : \mathcal{S}_d \to \{-1, 1\}$ tel que si s est un 2-cycle, alors $\varepsilon(s) = 1$.

Corollaire 2.18. 1. $\operatorname{Ker}(\varepsilon) = A_d \triangleleft S_d$

2. $S_d/A_d \simeq \{-1,1\}.$

Preuve du théorème 2.17. Existence : Pour $s \in \mathcal{S}_d$, on pose

$$\varepsilon(s) = \prod_{\substack{(i,j) \in \{1,\dots,d\}^2 \\ i \neq j}} \frac{X_{s(i)} - X_{s(j)}}{X_i - X_j} = \pm 1.$$

On a $\varepsilon(st) = \varepsilon(s)\varepsilon(t)$ et si s est un 2-cycle, alors $\varepsilon(s) = -1$.

Unicité : Si ε non trivial, il existe un 2-cycle s tel que $\varepsilon(s) = -1$. Si s, s' sont deux 2-cycles alors il existe $w \in \mathcal{S}_d$ tel que $s' = wsw^{-1}$ et donc $\varepsilon(s) = \varepsilon(s')$. D'où l'unicité.

Autre démonstration pour montrer l'unicité de ε dans le théorème 2.17. Soit $\varepsilon : \mathcal{S}_n \to \{-1, 1\}$ un morphisme non trivial. Alors il existe un 2-cycle τ_0 tel que $\varepsilon(\tau_0) = -1$ (car sinon comme les 2-cycles engendrent \mathcal{S}_n , on aurait $\varepsilon(\omega) = 1$ pour $\omega \in (\mathcal{S}_n)$. En fait, $\varepsilon(\tau) = -1$ pour tout 2-cycle τ . Notons que si $\tau_0 = (a \ b)$ et si $\omega \in \mathcal{S}_n$:

$$\omega \tau_0 \omega^{-1} = (\omega(a) \ \omega(b)).$$

On a en particulier:

$$\varepsilon(\omega(a) \ \omega(b)) = \varepsilon(\omega)\varepsilon(\tau_0)\varepsilon(\omega)^{-1} = -1.$$

Si $\tau = (a' \ b')$ est un 2-cycle on peut toujours l'écrire

$$\tau = \omega \tau_0 \omega^{-1}.$$

Il suffit de prendre pour ω une bijection de $\{1,\ldots,n\}$ qui envoie a sur a', et b sur b'. Donc $\varepsilon(\tau)=-1$. Les 2-cycles engendrent S_n , alors la connaissance de ε sur les 2-cycles détermine ε . On a de plus $\mathrm{Ker}(\varepsilon)=\mathcal{A}_n$.

- (\supset) évident.
- (\subset) On observe que:
 - 1. $[S_d : \operatorname{Ker} \varepsilon] = 2 \operatorname{car} S_d / \operatorname{Ker} \varepsilon \simeq \varepsilon(S_d) = \{\pm 1\}$ (d'après le premier théorème d'isomorphisme, en cosidérant le morphisme ε).
 - 2. $[S_d : A_d] = 2$. On veut le montrer. Soit $\omega \in S_d$ tel que $\omega = \tau_1 \dots \tau_m$ avec τ des transpositions. Si m est pair alors $\omega \in A_n$, sinon

$$\omega \tau_m = \tau_1 \dots \tau_{m-1} \in \mathcal{A}_n.$$

Donc soit $\omega \in \mathcal{A}_n$ ou soit $\omega \tau_m \in \mathcal{A}_n$. Il y a donc 2 classes à gauche de \mathcal{S}_n modulo \mathcal{A}_n :

- la classe triviale \mathcal{A}_n ,
- la classes des 2-cycles $\tau_0 \mathcal{A}_n$.

D'où
$$[S_d : A_d] = 2$$
.

Ainsi:

$$\frac{|\mathcal{S}_d|}{|\mathcal{A}_d|} = 2 = \frac{|\mathcal{S}_d|}{|\operatorname{Ker} \varepsilon|},$$

d'où $|\mathcal{A}_d| = |\operatorname{Ker} \varepsilon|$. On a

$$\mathcal{A}_d \subset \ker \varepsilon$$

et comme : $|\mathcal{A}_d| = |\operatorname{Ker} \varepsilon|$ alors $\mathcal{A}_d = \operatorname{Ker} \varepsilon$.

Remarque 2.19. En particulier, on a :

$$\mathcal{A}_d \triangleleft \mathcal{S}_d$$
.

 $\operatorname{car} \operatorname{Ker}(\varepsilon) = \mathcal{A}_d$ est distingué dans \mathcal{S}_d .

Définition 2.20. On définit [G:H]

$$[G:H] = \frac{|G|}{|H|}$$

comme étant le nombre de classes à gauche (ou à droite) modulo H.

Exemple 2.21. Soient n = 3 et $\sigma = (1 \ 2 \ 3)$ alors

$$\varepsilon(\sigma) = \frac{(x_2 - x_3)(x_3 - x_1)(x_2 - x_1)}{(x_1 - x_2)(x_2 - x_3)(x_1 - x_3)} = 1.$$

- Si $\sigma \in \mathcal{S}_n$, $\varepsilon(\sigma) \in \{\pm 1\}$
- Si σ est un 2-cycle, $\varepsilon(\sigma) = -1$.

Soient $\sigma, \tau \in \mathcal{S}_n$. Alors

$$\varepsilon(\sigma\tau) = \prod_{(i,j)\in\mathcal{P}_n} \frac{x_{\sigma(\tau(i))} - x_{\sigma(\tau(j))}}{x_i - x_j} = \prod_{(i,j)\in\mathcal{P}_n} \frac{x_{\sigma(\tau(i))} - x_{\sigma(\tau(j))}}{x_{\tau(i)} - x_{\tau(j)}} \cdot \frac{x_{\tau(i)} - x_{\tau(j)}}{x_i - x_j}$$

$$= \prod_{(i,j)\in\mathcal{P}_n} \frac{x_{\tau(i)} - x_{\tau(j)}}{x_i - x_j} \times \prod_{(i,j)\in\mathcal{P}_n} \frac{x_{\sigma(\tau(i))} - x_{\sigma(\tau(j))}}{x_{\tau(i)} - x_{\tau(j)}}$$

$$= \varepsilon(\tau) \prod_{(i',j')\in Z(\mathcal{P}_n)} \frac{x_{\sigma(i')} - x_{\sigma(j')}}{x_{i'} - x_{j'}}$$

$$= \varepsilon(\tau)\varepsilon(\sigma)$$

où $Z(\mathcal{P}_n)$ désigne l'ensemble des couples où chaque paire n'est représentée qu'une seule fois.

2.2 Action d'un groupe

Définition 2.22. Soit G un groupe et E un ensemble. On définit l'action du groupe G sur l'ensemble E, l'application :

$$G \times E \mapsto E$$

$$(g, x) \to g.x$$

qui a les propriétés suivantes :

- 1. $\forall (g_1, g_2) \in G \times G, \ \forall x \in E, \ g_1g_2x = g_1(g_2x),$
- 2. $\forall x \in E, e.x = x$.

On dit aussi que E est muni d'une loi de composition externe à gauche à opérateurs dans G.

Définition 2.23. Pour $H \leq G$, on peut définir l'action de G par translation à gauche sur $Q_H = (G/H)_g$.

En effet:

$$gxH \in xH \iff gxH = xH$$

 $\iff gx \in xH \iff g \in xHx^{-1}.$

On peut préciser le résultat. Avant cela, on rappelle la définition du noyau d'une action :

Définition 2.24. Soient G un groupe et E un ensemble. Soit γ une action de G sur E. On définit le noyau de l'action :

$$\operatorname{Ker} \gamma = \{ g \in G, \ \gamma(g) = \operatorname{id}_E \}.$$

Proposition 2.25. Soient un groupe G et $H \leq G$ alors le noyau de l'action γ de G sur $Q_H = (G/H)_q$ est :

$$\operatorname{Ker} \gamma = \{g \in G, \ g.xH = xH, \ \forall x\}$$

et c'est le plus grand sous-groupe de G, normal dans G et contenu dans H.

Proposition 2.26. Soient G un groupe et E un ensemble et soit γ une action de G sur E.

- 1. Si $H \triangleleft G$ tel que $x^{-1}Hx = H$ alors $\operatorname{Ker} \gamma = H$.
- 2. Si G est simple, $G \simeq \operatorname{Im} \gamma$ et $\operatorname{Ker} \gamma = \{e\}$. Il est « évident » que $\bigcap_{x \in G} xHx^{-1} \triangleleft G$.

Proposition 2.27. Si G est un groupe fini d'ordre n = 1, contenant un sous-groupe propre H tel que [G:H] = k > 1 et n ne divise pas k!, alors G n'est pas simple.

Définition 2.28. Soit G un groupe et E un ensemble. On appelle action de G sur E la donnée d'un homomorphisme

$$\rho : G \to \operatorname{Per}(E)$$

$$g \mapsto \rho(g) : E \to E$$

$$x \mapsto \rho(g)(x) = g.x$$

Exemples 2.29. 1. Si E est un ensemble ρ : $Per(E) \to Per(E)$ induit une action de G = Per(E) sur E: Si $g \in Per(E)$ et $x \in E$, $\rho(g)(x) = g.x$.

- 2. $E = \{1, ..., n\}, S_n \text{ agit sur } \{1, ..., n\}.$
- 3. Si $G_n < \mathcal{S}_n$, le morphisme $G \to \mathcal{S}_n$ qu'on appelle injection canonique induit une action de G sur $\{1, \ldots, n\}$.
- 4. Soit G un groupe. Le morphisme

$$\gamma: G \to \operatorname{Per}(G)$$
 $g \mapsto \gamma(g): G \to G$
 $x \mapsto g.x$

de représentation régulière à gauche de G induit une action de G sur lui-même.

5. Une action de S_4 sur $\{1, \ldots, 6\}$: Tout élément $\omega \in S_4$ agit sur les paires $\{i, j\}$ formées d'éléments de $\{1, 2, 3, 4\}$:

$$\omega(\{i,j\}) = \{\omega(i), \omega(j)\}, \qquad \omega = (1\ 2\ 3\ 4),$$

$$\dot{1} = \{1,2\} \longrightarrow \{2,3\}$$

$$\dot{2} = \{1,3\} \longrightarrow \{2,4\}$$

$$\dot{3} = \{1,4\} \longrightarrow \{2,1\}$$

$$\dot{4} = \{2,3\} \longrightarrow \{3,4\}$$

$$\dot{5} = \{2,4\} \longrightarrow \{3,1\}$$

$$\dot{6} = \{3,4\} \longrightarrow \{4,1\}$$

On a $\omega = (\dot{1} \dot{4} \dot{6} \dot{3})(\dot{2} \dot{5})$. De façon générale, moyennant ces notations, tout élément ω agissant sur les paires de $\{1, 2, 3, 4\}$ s'écrit comme un élément de \mathcal{S}_6 . On a aussi l'action suivante $\mathcal{S}_4 \to \mathcal{S}_6$.

Définition 2.30. Étant donnée une action $\rho: G \to Per(E)$ pour tout $x \in E$, on pose

$$O_{\rho}(x) = \{\rho(g)(x)|g \in G\} \subset E$$

qu'on appelle l'orbite de x dans l'action de G sur E et

$$G_{\rho}(x) = \{g \in G \mid \rho(g)(x) = x\} \subset G,$$

qu'on appelle le fixateur de x dans l'action de G sur E (on a $G_{\rho}(x) < G$).

$$g_1, g_2 \in G_{\rho}(x), \quad \rho(g_1g_2)(x) = \rho(g_1) \circ \rho(g_2)(x) = \rho(g_1)[\rho(g_2)(x)] = \rho(g_1)(x) = x.$$

Remarque 2.31. Pour $s \in Per(E)$ et $x \in E$, on a déjà défini l'orbite de x sous s comme $O_s(x) = \{s^n(x) | n \in \mathbb{Z}\}$. En fait, $O_s(x)$ correspond à l'orbite nouvellement définie de x dans l'action $\langle s \rangle \xrightarrow{\rho} Per(E)$ (injection canonique)

Proposition 2.32. Si G fini, on a

$$\operatorname{card}(O_{\rho}(x)) = \frac{|G|}{|G_{\rho}(x)|}.$$

Démonstration. On considère l'application

$$\begin{array}{ccc} G & \mapsto & O_p(x) \\ g & \to & \rho(g)(x) \end{array}.$$

Elle est

- bien définie (par définition),
- injective (par définition).

On définit pour $g_1, g_2 \in G$,

$$g_1 \sim g_2 \Rightarrow \rho(g_1)(x) = \rho(g_2)(x).$$

C'est une relation d'équivalence.

$$g_1 \sim g_2 \iff \rho(g_2)^{-1}\rho(g_1)(x) = x$$

$$\iff \rho(g_2^{-1}g_1)(x) = x$$

$$\iff g_2^{-1}g_1 \in G_\rho(x) \iff g_1G_\rho(x) = g_2G_\rho(x).$$

La relation \sim est une relation d'équivalence associée avec classes à gauche de G modulo son sous-groupe $G_{\rho}(x)$. On définit l'application :

$$\varphi : G/.G_{\rho}(x) \to O_{\rho}(x) gG_{\rho}(x) \mapsto \rho(g)(x) .$$

- φ est bien définie : si g_1, g_2 sont 2 représentants de la même classe, alors $g_1 \sim g_2$, c'est-à-dire $\rho(g_1)(x) = \rho(g_2)(x)$.
- $-\varphi$ est surjective : évident.
- φ est injective : soient $g_1G_{\rho}(x), g_2G_{\rho}(x)$ tels que $\rho(g_1)(x) = \rho(g_2)(x)$. On a donc : $g_1 \sim g_2$, c'est-à-dire $g_1G_{\rho}(x) = g_2G_{\rho}(x)$.
- $\Rightarrow \varphi$ est donc bijective d'où

$$\operatorname{card}(O_{\rho}(x)) = \operatorname{card}(G/G_{\rho}(x)) = [G : G_{\rho}(x)] = \frac{|G|}{|G_{\rho}(x)|}.$$

Proposition 2.33 (Formule des classes). Soit $\rho: G \to Per(E)$ une action. On pose, pour $x, y \in E$, $x \sim y$ s'il existe $g \in G$ tel que $y = \rho(g)(x)$. \sim est une relation d'équivalence. Pour tout $x \in E$, la classe d'équivalence de x est $O_{\rho}(x)$. Les classes forment une partition de l'ensemble E. Si E fini, on déduit :

$$\operatorname{card}(E) = \sum_{i=1}^{r} \operatorname{card}(O_i)$$
(2.1)

où O_1, \ldots, O_r sont les orbites distinctes.

Remarque 2.34.

$$\operatorname{card}(O_{\rho}(x)) = 1 \iff O_{\rho}(x) = \{x\} \iff \forall g \in G, \ \rho(g)(x) = x.$$

Définition 2.35. On pose $E_G = \{x \in E | \rho(g)(x) = x\} \subset E$ qu'on appelle ensemble des points fixes de l'action. L'égalité (2.1) se réecrit :

$$\operatorname{card}(E) = |\Sigma| + \operatorname{card}(E_G).$$

où Σ est la somme des cardinaux des orbites de cardinal 2.

Définition 2.36. Une action $\rho: G \to \operatorname{Per}(E)$ est dite fidèle si ρ est injectif.

Remarque 2.37. Une définition équivalente à la définition 2.36 est la suivante :

$$q \in G$$
 et $qx = x$, $\forall x \in E \Rightarrow q = e$.

Exemple 2.38. L'action suivante est fidèle :

On appelle cette action, représentation régulière de G à gauche.

Définition 2.39. ρ est dite transitive s'il n'existe qu'une seule orbite (c'est-à-dire tous les éléments de E sont dans la même orbite ou c'est-à-dire pour tout $x \in E$, pour tout $y \in E$, il existe $q \in G$ tel que $\rho(q)(x) = y$.

Exemples 2.40. 1. γ est transtive car si $x, y \in G$, $\gamma_g(x) = y$ pour $g = yx^{-1}$.

2. $\sigma = (1, 2, 3)$ dans \mathcal{S}_4 . L'action de $\langle \sigma \rangle$ sur $\{1, 2, 3, 4\}$ n'est pas transitive (les orbites sont $\{1, 2, 3\}$ et $\{4\}$).

Définition 2.41. ρ est dite n-transitive si pour tout $(x_1, ..., x_n) \in E^n$ tel que les x_i sont deux à deux distinctes et pour tout $(y_1, ..., y_n) \in E^n$ tel que les y_i sont deux à deux distinctes, il existe $g \in G$ tel que $gx_i = y_i$, i = 1, ..., n.

Remarques 2.42. 1. Pour $n \ge m \ge 1$, n-transitif $\Rightarrow m$ -transitive $\Rightarrow 1$ -transitif (= transitif).

2. S_d est d-transitif (dans son action sur $\{1, ..., d\}$) si $(x_1, ..., x_d)$, $(y_1, ..., y_d)$ vérifient la condition de la définition 2.41. L'application σ qui envoie x_i sur y_i pour i = 1, ..., d est une permutation de $\{1, ..., d\}$.

3.

$$\mathcal{H} = \{ \text{homographie bijective} \}$$

$$= \left\{ z \xrightarrow{h} \frac{az+b}{cz+d} \mid a,b,c,d \in \mathbb{C}, \ (c,d) \neq (0,0) \right\}.$$

 \mathcal{H} opère sur $\mathbb{C} \cup \{\infty\}$

$$\rho : \mathcal{H} \to \operatorname{Per}(\mathbb{C})
h \mapsto h : \mathbb{C} \to \mathbb{C} .$$

 \mathcal{H} est bien sûr un groupe et ρ . \mathcal{H} est 3-transitif.

Justification. Soient $(a, b, c) \in (\mathbb{C} \cup \{\infty\})^3$ (avec a, b, c deux à deux distincts) et $(a', b', c') \in (\mathbb{C} \cup \{\infty\})^3$ (avec a', b', c' deux à deux distincts) alors il existe une homographie h tel que:

$$\begin{cases} h(a) = a', \\ h(b) = b', \\ h(c) = c'. \end{cases}$$

Définition 2.43. L'action ρ est dite imprimitive si ρ est transitive et il existe une partition de E (non triviale, c'est-à-dire $\operatorname{card}(E_i) \geq 2$ et $i \geq 2$) en sous-ensembles $(E_i)_{i \in I}$ (automatiquement de même cardinal) qui soit invariante par l'action (de tout élément $\rho(g)$). De façon plus explicite, on doit avoir : si $g \in G$, pour tout $i \in I$, si $x, y \in E_i$ alors $\rho(g)(x)$ et $\rho(g)(y)$ sont un même E_j qu'on note $E_{i(g)}$.

Remarque 2.44. $\rho(g): E_{i(g)} \to E_i$ est une bijection.

Exemples 2.45. 1. $G = \langle \underbrace{(123456)}_{\sigma} \rangle \subset S_6$ opère sur $\{1, 2, 3, 4, 5, 6\}$. L'action est :

- transitive,
- imprimitive : on écrit

$$\underbrace{\{1,2,3,4,5,6\}}_{E} = \underbrace{\{1,3,5\}}_{E_1} \cup \underbrace{\{2,4,6\}}_{E_2}$$

et on a

$$\sigma^{2k+1}(E_1) = \{2, 4, 6\} = E_2$$

$$\sigma^{2k+1}(E_2) = \{3, 5, 1\} = E_1.$$

 σ transforme la partition E_1, E_2 de E en la partition E_2, E_1 (c'est-à-dire la même).

2. Soit G un groupe. Soient $\gamma: G \to \operatorname{Per}(G)$ (représentation regulière à gauche) et H < G. Les classes xH de G modulo H forment une partition de G. Cette partition est invariante pour tout élément de G: soit $g \in G$, soient $x,y \in G$ tel que $y \in xH$. On a $gy \in gH$. Comme γ est aussi transitive, elle est imprimitive.

Définition 2.46. L'action ρ est dite primitive si ρ est transitive et non imprimitive.

Proposition 2.47. Soient $\rho: G \to \operatorname{Per}(E)$ une action transitive et $x_0 \in E$. On a ρ imprimitive si et seulement si il existe un sous groupe de H tel que $G(x_0) \subseteq H \subseteq G$.

Démonstration. (\Rightarrow) Soit $(E_i)_{i\in I}$ une partition non triviale de E invariante par l'action. Soit $i_0 \in I$ tel que $x_0 \in E_{i_0}$. On pose

$$H = \{g \in G, \, \rho(g)(E_{i_0}) = E_{i_0}\} = \operatorname{Stab}_G(E_{i_0}),$$

et

- -H < G.
- $-G_{x_0} \subset H$: soit $g \in G_{x_0}$ c'est-à-dire $\rho(g)(x_0) = x_0 \in E_{i_0}$, ce qui entraine $\rho(g)(E_{i_0}) = E_{i_0}$ car ρ lasse la partition invariante, tous les élémnets images de E_{i_0} sont dans le même sous-ensemble de la partition.

 $-H \neq G$: si H = G alors

$$\rho(g)(E_{i_0}) = E_{i_0} \quad \text{pour tout } g \in G$$
 (2.2)

Cela contredit la transitivité de ρ car $(2.2) \Rightarrow$ l'orbite de x_0 est contenue dans $E_{i_0} \neq E$. - $Gx_0 \neq H$. Soit $h \in G$ tel que $\rho(h)(x_0) \in E_{i_0} \setminus \{x_0\}$ (h existe par transitivité de l'action) $h \notin Gx$ et $h \in H$ (par imprimitivité et par définition de H).

 (\Leftarrow) On considère les classes à gauche de G modulo $H, g_1H, ..., g_nH$ et on pose

$$E_i = \{ \rho(g_i h)(x_0), h \in H \}.$$

On montre que ces E_i , i = 1, ..., n constituent une partition de E.

- Soient $i \neq j$ et $h \in H$,

$$\rho(g_i h)(x_0) \iff \rho(g_j h)(x_0).$$

$$x_0 = \rho(g_j h)^{-1}(\rho(g_i h)(x_0))$$

= $\rho((g_j h)^{-1}(g_i h))(x_0)$ (car ρ est un morphisme)
= $\rho(h^{-1}g_j^{-1}g_i h)(x_0)$.

Ainsi, $h^{-1}g_j^{-1}g_ih \in G_{x_0}$. Comme $G_{x_0} \subset H$, on a $h^{-1}g_j^{-1}g_ih \in H$ et donc $g_j^{-1}g_i \in H$ d'où $g_j^{-1}g_i = h' \in H$, soit $g_i = g_jH$, d'où g_i et g_j sont dans la même classe. Ce qui contredit l'hypothèse $g_iH \neq g_jH$. Donc $E_i \cap E_j = \emptyset$.

- $-\bigcup_{i=1} E_i = E.$
 - (\supset) Soit $x \in E$. Par transitivité (ρ est transitive par hypothèse), il existe $g \in G$ tel que $\rho(g)(x_0) = x$. L'élément $g \in G$ est une classe à gauche g_iH , pour $i \in \{1, \ldots, n\}$ car g_iH forment une partition de G, donc s'écrit $g = g_ih$ pour un $h \in H$. D'où,

$$x = \rho(g)(x_0) = \rho(g_i h)(x_0) \in E_i.$$

- La partition de E en la réunion des E_i est invariante par l'action. Soit $g \in G$

$$\rho(g)(E_i) = {\rho(gg_ih)(x_0), h \in H}$$

et

$$E_i = \{ \rho(g_i h)(x_0), h \in H \}.$$

Quand h décrit H, $g_i h$ décrit $g_i H$ et $gg_i h$ décrit la classe $gg_i H$ qui est une des classes $g_i H$ où i = 1, ..., n. Disons $gg_i h = g_k H$. Alors $\rho(g)(E_i) = E_k$. $\rho(g)$ permute les ensembles $E_1, ..., E_n$.

– La partition est non triviale : soient $h_1Gx_0, ..., h_mGx_0$ la liste des classes à gauche de H modulo G_{x_0} . Ces classes forment une partition de H, donc pour un $h \in H$, on peut écrire : $h \in h_i \gamma$ avec $\gamma \in G_{x_0}$. Donc pour un g_k , représentant d'une classe de H, on a :

$$\rho(q_k h)(x_0) = \rho(q_k h_i \gamma)(x_0) = \rho(q_k) \rho(h_i)(x_0) = \rho(q_k h_i)(x_0).$$

Donc lorsque h parcourt H, $\rho(g_ih)(x_0)$ sera égal à l'un des $\rho(g_ih_j)$ (d'où m possibilités). Donc

$$E_i = {\rho(g_i h_j)(x_0), j = 1, ..., m}.$$

Si $j \neq j'$,

$$\rho(g_i h_i)(x_0) \neq \rho(g_i h_{i'})(x_0)$$

car sinon

$$(g_i h_j)^{-1} (g_i h_j) \in Gx_0$$
 et $h_i^{-1} h_j \in Gx_0$.

Contradiction. Donc, s'il existe au moins deux h_i distincts de deux classes différentes, alors E_i a au moins deux éléments distincts. Voyons que c'est effectivement le cas :

$$\operatorname{card}(E_i) = m = [H : G_{x_0}]$$

d'après l'explication ci-dessus, quand h parcourt H. Chaque E_i contient autant d'élément qu'il y a de classes modulo G_{x_0} , soit m éléments.

$$= \frac{|H|}{|G_{x_0}|} \begin{cases} \neq 1 & \text{car } H \supsetneq Gx_0 \text{ par hyp. Donc } \operatorname{card}(E_i) \geq 2 \\ \neq \operatorname{card}(E) & \text{car } \operatorname{card} E = [G : Gx_0] = \frac{|G|}{|Gx_0|} \text{ et que } |H| \neq |G| \\ & \text{toujours par hypothèse. Donc } \operatorname{card}(I) \geq 2. \end{cases}$$

On a donc les deux critères d'une parition non triviale : $\operatorname{card}(E_i) \geq 2$ et $\operatorname{card}(I) \geq 2$.

Proposition 2.48. Soit $\rho: G \to \operatorname{Per}(X)$ une action et soit $x \in X$. Alors ρ est imprimitive \iff il existe H un sous-groupe de G tel que $G(x) \subseteq H \subseteq G$.

Remarque 2.49. La condition ne dépend pas de x. Soit $x' \in X$, il existe $\sigma \in \text{Per}(X)$ tel que $\sigma(x) = x'$. Alors $G(\sigma(x)) = \sigma G(x)\sigma^{-1}$.

Démonstration. () Si $\tau \in G(x)$ c'est-à-dire si $\tau x = x$ soit $\rho(\tau)(x) = \tau$

$$(\sigma\tau\sigma^{-1})(\sigma(x)) = \sigma(x).$$

Donc $\sigma \tau \sigma^{-1} \in G(\sigma(x))$.

(\subset) Il faut écrire (\supset) pour σ^{-1} à la place de σ . Si $G(x) \subsetneq H \subsetneq G$ alors $G(x') \subsetneq \sigma H \sigma^{-1} \subsetneq G$.

Exemple 2.50. Soit $\gamma: G \to \operatorname{Per}(G)$ une représentation regulière à gauche. Si $x \in G$:

$$G(x) = \{g \in G \, | \, gx = x\} = \{1\}.$$

L'action est imprimitive d'après le critère de la proposition 2.48, il suffit de montrer H < G tel que

$$\{1\} \subseteq H \subseteq G$$
,

ce qui est possible sauf si |G| premier.

Démonstration. Si |G| n'est pas premier, disons |G| = d, il existe r|d et il existe x tel que

$$|< x > | = r,$$

sinon $\forall x$, l'ordre de $|\langle x \rangle| = d \Rightarrow (x^r)^{d/r} = e$

$$|\langle x^r \rangle| = d/r \langle d,$$

(contradiction). \Box

;. □ **Proposition 2.51.** Soit $\rho: G \to \mathcal{S}_n$ une action (on suppose ρ transitive). ρ est 2-transitive $\iff G(1)$ agit transitivement sur $\{2, ..., n-1\}$.

Proposition 2.52. Soit $\rho: G \to \mathcal{S}_n$ une action. on a ρ 2-transitive $\Rightarrow \rho$ primitive.

Démonstration de la proposition 2.51. (\Rightarrow) Il s'agit de montrer : pour tout $j \in \{2, ..., n-1\}$, il existe $g(1) \in G$ tel que g(2) = j, c'est-à-dire :

$$g(1) = 1,$$
 $g(2) = j.$

Ce qui est possible par définition 2.41 (de la 2-transitivité).

(⇐) Il s'agit de démontrer pour tout (a,b) avec $a,b \in \{1,...,n\}$, $a \neq b$, il existe $g \in G$ tel que

$$\begin{cases} g(1) = a, \\ g(2) = b. \end{cases}$$

L'action est transitive donc il existe $g \in G$ tel que g(1) = a. Soit g(2) = b'. Par hypothèse, G(1) agit transitivement sur $\{2, ..., n-1\}$ dont il existe $g' \in G(1)$ tel que g'(b') = b. On a :

$$\begin{cases} g'g(1) &= g'(a) = a \\ g'g(2) &= g'(b') = b \end{cases}.$$

Démonstration de la proposition 2.52. On suppose que ρ 2-transitive.

- ρ est transitive.
- Si ρ est imprimitive, il existe une partition $(E_i)_{i\in I}$ non triviale qui soit invariante par l'action .Soient $a, b \in E_{i_0}$, $a \neq b$, Par la 2-transitivité, il existe $g \in G$ tel que $g(a) \in E_{i_0}$ et $g(b) \notin E_{i_0}$.

Ce qui contredit l'imprimitivité.

Proposition 2.53. Soit $\rho: G \subset \mathcal{S}_n \to \mathcal{S}_n$ action transitive. On suppose que G est engendré par des cycles de longueur première. Alors l'action est primitive.

Démonstration. Supposons ρ imprimitive : il existe une partition $(X_i)_{i\in I}$ de $\{1,...,d\}$ invariante par l'action. Soit g un cycle dans g, soit $i \in \{1,...,n\}$ quelconque. Supposons $g(X_i) \not\subset X_i$ alors il existe $x_i \in X_i$ tel que $g(x_i) \notin X_i$. Par imprimitivité, on a :

$$g(x) \notin X_i$$
 pour tout $x \in X_i$

et donc $X_i \subset \text{supp}(g)$ car il n'y a aucun point fixe.

Supposons $g(X_1) \not\subset X_1$, ce qui entraine, d'après ci-dessus, que :

$$X_1 \subset \text{supp}(g)$$
 (2.3)

Soit $i \neq 1$, on a soit :

$$q(X_i) \neq X_i \tag{2.4}$$

ou bien

$$g|_{X_i} = \mathrm{id} \tag{2.5}$$

En effet, si $g(X_i) = X_i$ et $g|_{X_i} \neq id$, c'est-à-dire il existe $x \in X_i$ tel que $g(x) \neq x$. Alors

$$\operatorname{supp}(g) = g_{\circlearrowleft}(x) = \{x, g(x), g^2(x), \dots, g^k(x)\} \subset X_i \quad \text{car } g \text{ est un cycle}$$
 (2.6)

On en déduit de (2.3) et (2.6) que $X_1 \subset X_i$. Contradiction avec $\{X_i\}_i$, partition de $\{1,\ldots,d\}$. Montrons maintenant (2.5) : si $g(X_i) \neq X_i$ alors, par imprimitivité, $X_i \subset \text{supp}(g)$ et si $g|_{X_i} = \text{id}$ alors $X_i \cap \text{supp}(g) = \emptyset$. Donc on a soit $g(X_i) \neq X_i$, soit $g|_{X_i} = \text{id}$.

Conclusion : supp(g) est réunion d'un certain nombre ≥ 1 de X_i :

$$|\operatorname{supp}(g)| = d = k|X_i|$$
 où d est premier

Si g est cycle de longueur un nombre premier, cela ne peut pas se produire. Contradiction dans ce cas.

On obtient donc:

 $g(X_i) \subset X_i$ pour tout g cycle de longueur un nombre premier

$$q(X_i) \subset X_i$$
 pour tout $q \in G$

Ce qui contredit la transitivité de l'action. Donc ρ est primitive.

Définition 2.54. Deux actions $\rho: G \to \operatorname{Per}(X)$ et $\rho': G \to \operatorname{Per}(X')$ sont dites équivalentes si « les actions sont les mêmes à la numérotation près des éléments de l'ensemble » c'est-à-dire il existe une bijection $\gamma: X \to X'$ tel que pour tout $g \in G$, ce diagramme :

$$X \xrightarrow{\rho(g)} X$$

$$\uparrow \qquad \circlearrowleft \qquad \downarrow \gamma$$

$$X' \xrightarrow{\rho'(g)} X'$$

commute c'est-à-dire :

$$\rho'(g)\circ\gamma=\gamma\circ\rho(g)$$

(ou autrement si $\rho(g)(x) = y$ alors $\rho'(g)(\gamma(x) = \gamma(y))$).

Soit G un groupe et soit H < G. On a déjà introduit l'action :

Cette fonction est transitive (dite de translation à gauche sur le classes à gauche).

Proposition 2.55. Réciproquement si $\rho: G \to \operatorname{Per}(X)$ est une action transitive alors ρ est équivalente à l'action $T\gamma$ précédente pour $H = G_{\rho(x)}$ (où $x \in X$).

Démonstration. On pose :

$$\begin{array}{cccc} \gamma & : & G/G(x) & \to & X \\ & gG(x) & \mapsto & \rho(g)(x) \end{array}$$

On vérifie que γ est :

• bien définie. Si g et g' sont dans la même classe : $g^{-1}g'$ est dans G_x . Donc

$$\rho(g^{-1}g')(x) = x \iff \rho(g^{-1})\rho(g')(x) = x$$

$$\iff \rho(g^{-1})(\rho(g')(x)) = x \iff \rho(g'(x)) = \rho(g)(x),$$

en composant à gauche par $\rho(g)$. Or : $\gamma(g(G(x))) = \rho(g)(x)$ et $\gamma(g'(G(x))) = \rho(g')(x)$ et ces images sont égales d'après ci-dessus, d'où γ est bien une application.

• injective :

$$\rho(g)(x) = \rho(g')(x) \iff g^{-1}g' \in G(x) \qquad g \in G$$

surjective (transitivité).

$$G/G(x) \xrightarrow{T(g)} G/G(x)$$

$$\uparrow \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma$$

$$X \xrightarrow{\rho(g)} X$$

$$\rho'(g) \circ \gamma = \gamma \circ \rho(g)$$

Soit $g'G(x) \in G/G(x)$

$$\rho(g) \circ \gamma(g'G(x)) = \rho(g)(\rho(g')(x)) = \rho(gg')(x)$$

$$\gamma \circ T(g)(g'G(x)) = \gamma(gg'G(x)) = \rho(gg')(x)$$

Définition 2.56 (Action par conjugaison). Soit G un groupe. L'application

définit une action de G sur lui-même.

En effet, C_g est bijective car $(C_g)^{-1} = C_{g^{-1}}$. $g \to C_g$ morphisme car

$$C_{q_1q_2} = C_{q_1} \circ C_{q_2}$$
.

En effet,

$$C_{g_1g_2} = g_1g_2x(g_1g_2)^{-1}$$

= $g_1(g_2xg_2^{-1})g_1^{-1} = C_{g_1} \circ (C_{g_2})(x).$

Remarque 2.57. $C_g \in Aut(G)$

$$C_g(xy) = gxyg^{-1}$$

= $gxg^{-1}gyg^{-1} = C_g(x)C_g(y)$

Pour $x \in G$,

$$O(x) = \text{orbite de } x = \{gxg^{-1}, g \in G\},$$

classe de conjugaison de x dans G;

$$G_x$$
 = fixateur de $x = \{g \in G, gxg^{-1} = x\},$

commutant de x dans G. On a si G fini

$$\operatorname{card}(O(x)) = \frac{|G|}{|G_x|}$$

Classes de conjugaison de S_n

Soit $w \in \mathcal{S}_n$, la classe de conjugaison de w est

$$\{g\omega g^{-1}, g\in \mathcal{S}_n\}.$$

Définition 2.58. On dit que w est de type $1^{r_1}2^{r_2}...n^{r_n}$ si dans la décomposition de w en produit de cycles à supports disjoints figurent

 r_1 points fixes, r_2 cycle de longueur 2, \vdots r_n cycle de longueur n.

Exemple 2.59.

$$w = (123)(45)(6789)(12\ 13\ 14)$$

est de type $1^22^13^24^1$.

Proposition 2.60. Deux permutations $w, w' \in \mathcal{S}_n$ sont conjuguées si et seulement si w et w' ont le même type de décomposition en cycles à supports disjoints

Exemple 2.61 (Dans S_8).

 $2^2.3.1 = \{\text{produits } 2\text{-transpositions, un } 3\text{-cycle, un point fixe}\}$

est une classe de conjugaison de S_8 .

Lemme 2.62. Si $c = (x_1, ..., x_n)$ et $q \in \mathcal{S}_n$ alors

$$gcg^{-1} = (g(x_1), ..., g(x_n)).$$

Démonstration de la proposition 2.60. (\Rightarrow) On suppose

$$w' = gwg^{-1} \text{ avec } g \in \mathcal{S}_n.$$

w s'écrit

$$w = \prod_{i=1} c_i,$$

où les c_i sont des cycles de longueur r_i à supports disjoints. On obtient

$$w' = gwg^{-1} = g \prod_{i=1} c_i g^{-1}$$
$$= \prod_{i=1} gc_i g^{-1} \to \text{ cycle de longueur } r_i.$$
(2.7)

Les cycles gc_ig^{-1} de la forme $(g(x_1), \ldots, g(x_2))$ sont de support $g(\text{supp}(c_i))$ qui sont disjoints car g est bijective et les x_i sont distincts. Conclusion : (2.7) est la décomposition de w' en cycle à supports disjoints. Elle est de même type que celle de w.

 (\Leftarrow) On suppose que w et w' sont de même type. On peut donc écrire

$$w = \prod_{i=1}^{n} c_i$$
 où les c_i sont des cycles à support disjoints, $w' = \prod_{i=1}^{n} c_i'$ où les c_i' sont des cycles à support disjoints,

et où pour chaque $i \in I$, c_i et c_i' sont des cycles de même longueur. On pose

$$c_{i} = (\underbrace{x_{i_{1}}, x_{i_{2}}, ..., x_{i_{n_{i}}}}_{n_{i} \text{ éléments}}),$$

$$c'_{i} = (x'_{i_{1}}, x'_{i_{2}}, ..., x'_{i_{n_{i}}}).$$

On définit un élément $g \in \mathcal{S}_n$ par

$$g(x_{i_i}) = x'_{i_i},$$

pour tout $i \in I$, pour tout $j = 1, ..., n_i$.

Exemple 2.63.

$$w = (123)(45),$$

$$w' = (341)(25),$$

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}.$$

En utilisant le lemme 2.62, on obtient :

$$gwg^{-1} = g\left(\prod_{i=1}^{n} c_i\right)g^{-1} = \prod_{i=1}^{n} gc_ig^{-1}$$

$$= \prod_{i=1}^{n} g(x_{i_1}, ..., x_{i_{n_i}})g^{-1}$$

$$= \prod_{i=1}^{n} (g(x_{i_1}), ..., g(x_{i_{n_i}}))$$

$$= \prod_{i=1}^{n} (x'_{i_1}, x'_{i_2}, ..., x'_{i_{n_i}})$$

$$= \prod_{i=1}^{n} c'_i = w'.$$

Conclusion: $gwg^{-1} = w'$.

2.3 Produit semi-direct

On se donne deux groupes G et H et une action $\rho: G \to \operatorname{Aut}(H)$.

Définition 2.64. Le produit semi-direct $H \times G$ est l'ensemble $H \times G$ muni de la loi

$$(h.g).(h',g') = (h\rho(g)(h'),gg') \in H \times G.$$

On obtient aussi un groupe.

Vérification. – loi interne, – élément symétrique,

- élément neutre (ρ est un automorphisme donc $\rho(g)(e) = e$),
- associativité

$$((h.g).(h',g')).(h'',g'') = (h\rho(g)(h').\rho(gg')'h''), (gg')g'')$$

$$(h,g).((h',g').(h'',g'')) = (h.g).(h'\rho(g')(h''),g'g'')$$

$$= (h\rho(g)(h'\rho(g')(h''),g(g'g'')).$$

On a que $\rho(g)$ est un automorphisme donc

$$\rho(g)(h_1h_2) = \rho(g)(h_1)\rho(g)(h_2).$$

Ainsi,

$$\rho(g)(h'\rho(g')(h'')) = \rho(g)(h')\rho(g)(\rho(g')(h''))$$

= \rho(g)(h')\rho(gg')(h'').

On a ainsi que le symétrique est :

$$(h,g)^{-1} = (\rho(g^{-1})(h^{-1}), g^{-1}).$$

Remarques 2.65. 1. $H \rtimes G$ n'est pas commutatif.

2. Le produit direct $H \times G$ correspond au produit semi-direct où $G \to \operatorname{Aut}(H)$ est l'action triviale, c'est-à-dire $\rho(g) = \operatorname{id}_H$.

Exemple 2.66 (groupe diédral). $D_n = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, avec l'action

$$\begin{array}{cccc} \rho & : & \mathbb{Z}/2\mathbb{Z} & \longmapsto & \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \\ & \dot{0} & \longmapsto & \operatorname{id} \\ & \dot{1} & \longmapsto & -\operatorname{id} \\ & \dot{s} & \longmapsto & (-1)^s \operatorname{id}. \end{array}$$

$$(m,s)(m',s') = (m+(-1)^s m', s+s').$$

Application pour n = 7:

$$(3,1)(2,1) = (3-2,1+1) = (1,0)$$

 $(2,1)(3.1) = (2-3,1+1) = (6,0).$

Proposition 2.67. 1. L'application

$$\begin{array}{cccc} i & : & H & \rightarrow & H \rtimes G \\ & h & \mapsto & (h,1) \end{array}$$

est un isomorphisme de H sur un sous-groupe distingué H' de $H \rtimes G$.

2. L'application

$$\begin{array}{cccc} j & : & G & \to & H \rtimes G \\ & g & \mapsto & (1,g) \end{array}$$

est un isomorphisme de G sur un sous-groupe G' de $H \rtimes G$.

3. L'application

$$\begin{array}{cccc} \rho_2 & : & H \rtimes G & \to & G \\ & (h,g) & \mapsto & g \end{array}$$

est un morphisme surjectif.

4. De plus, on a:

$$H \rtimes G = H'G'$$

avec H' est un sous groupe distingué de $H \rtimes G$, G' est un sous-groupe de $H \rtimes G$, $H' \cap G' = \{1\}$ et

$$j(g)i(h)j(g)^{-1} = i(\rho(g)(h))$$
 pour $g \in G$, $h \in H$.

Démonstration. 1. On montre que i, j et ρ_2 sont des morphismes :

(a) Pour l'application i:

$$i(hh') = (hh', 1),$$

 $i(h)i(h') = (h, 1)(h', 1) = (h\rho(1)(h'), 1.1) = (hh', 1).$ (2.8)

- (b) Pour l'application j, faire la même chose que (2.8).
- (c) Pour l'application ρ_2 ,

$$\rho_2((h,g)(h',g')) = \rho_2(h\rho(g)(h'), gg') = gg'$$

= $\rho_2((h,g))\rho_2((h',g')).$

(d) Par contre ρ_1 n'est pas un morphisme :

$$\rho_1((h, g)(h'g')) = \rho_1(h\rho(g)(h'), gg')
= h\rho(g)(h')
\neq hh' = \rho_1(h, q)\rho_1(h', q').$$

2. (a) On montre que i et j sont injectives :

$$H \simeq i(H) = H' < H \rtimes G,$$

 $G \simeq j(G) = G' < H \rtimes G.$

- (b) On montre que ρ_2 est surjective.
- 3. On montre que H' est un sous-groupe distingué de $H \rtimes G$. Soit $(h,1) \in H'$ tel que $h \in H$. Soit $(k,g) \in H \rtimes G$ avec $k \in H$ et $g \in G$). On veut montrer que $(k,g)(h,1)(k,g)^{-1} \in H'$.

$$(k,g)(h,1)(k,g)^{-1} = (k,1)(1,g)(h,1)((k,1)(1-g))^{-1}$$

$$= (k,1)(1,g)(h,1)(1,g)^{-1}(k,1)^{-1}$$

$$= (k,1)(\rho(g)(h),g)(1,g^{-1})(k,1)^{-1}$$

$$= (k,1)(\rho(g)(h),1)(k,1)^{-1} \in H'.$$

D'autre part, le calcul montre que

$$j(g)i(h)j(g)^{-1} = i(\rho(g)(h)),$$

donc $H' \triangleleft H \rtimes G$.

4. Reste à voir que

$$H' \cap G' = \{(1,1)\}$$
 (par définition),
 $H \rtimes G = H'G'$. (2.9)

(2.9)— (\supset) évident.

$$(2.9) - (\subset) (h, g) = (h, 1)(1, g).$$

Remarques 2.68. 1.

$$H \xrightarrow{i} H' \subset \qquad H \times G \qquad \supset G' \xleftarrow{j} G \; .$$

$$h \longmapsto (h, 1)$$
 $(1, g) \longleftarrow g$

- 2. On identifie $H \ \grave{a} \ H' \ (h \ \grave{a} \ i(h), i \ \grave{a} \ \text{une inclusion})$ et $G \ \grave{a} \ G' \ (g \ \grave{a} \ j(g), j \ \grave{a} \ \text{une inclusion})$.
- 3. Tout élément $(h,g) \in H \rtimes G$ s'écrit

$$(h,g) = (h,1)(1,g) = hg.$$

4. $j(g)i(h)j(g)^{-1} = i(\rho(g)(h))$ donc

$$ghg^{-1} = \rho(g)h.$$

5. Le produit

$$(h,g)(h',g') = (h\rho(g)(h'), gg')$$

se réécrit

$$hg.h'g' = h\rho(g)(h').gg' = h(gh'g^{-1})gg'.$$

Définition 2.69. On appelle suite exacte (courte), la donnée

$$1 \xrightarrow{i} H \xrightarrow{f} G \xrightarrow{g} K \xrightarrow{\rho} 1, \qquad (2.10)$$

où H,G,K sont des groupes, $1=\{1\}$, $i\in \operatorname{Hom}(1,H)$ avec i(1)=1, $\rho\in \operatorname{Hom}(K,1)$ avec $\rho(k)=1$, $f\in \operatorname{Hom}(H,G)$, $g\in \operatorname{Hom}(G,K)$ et où l'image d'un morphisme est le noyau du morphisme suivant :

$$f(H) = \operatorname{Ker}(g) \Rightarrow g \circ f = 1,$$

 $i(1) = \operatorname{Ker}(f) \iff f \text{ injective},$
 $g(G) = \operatorname{Ker}(\rho) \Rightarrow g \text{ injective}.$

Exemples 2.70. 1. Si $K \triangleleft G$, on a la suite exacte suivante :

$$1 \longrightarrow K \longrightarrow G \longrightarrow G/K \longrightarrow 1$$
.

2. Si G opère sur H, on a la suite exacte suivante :

$$1 \longrightarrow H \stackrel{i}{\longrightarrow} G \rtimes H \stackrel{\rho_2}{\longrightarrow} G \longrightarrow 1 ,$$

avec

$$i(H) = H', G = \text{Ker}(\rho_2), (h, g) \xrightarrow{\rho_2} g.$$

Définition 2.71. Étant donnée une suite exacte (2.10), on appelle section un morphisme $s: G \to E$ tel que $\rho \circ s = \mathrm{id}_G$. La suite exacte est dites scindée s'il existe une section.

Remarque 2.72. Le morphisme ρ est *surjectif*, donc pour $g \in G$, il existe un antécédent $s_g \in E$ de g par ρ (on a $\rho(s_g) = g$). La correspondance :

$$g \to s_q$$

n'est une section que si

$$s_a g' = s_a s_{a'}$$
 (morphisme).

Exemples 2.73. 1. Soit $\rho: G \to \operatorname{Aut}(H)$ donnée par la suite exacte suivante :

$$1 \longrightarrow H \longrightarrow H \rtimes G \xrightarrow{s} G \longrightarrow 1.$$

Plus précisément,

$$\begin{array}{cccc} \rho & : & H \rtimes G & \to & G \\ & (h,g) & \mapsto & g \end{array}$$

et s un morphisme :

s est une section.

2. Exemple d'une suite exacte non scindée. Soit la suite exacte suivante :

$$0 \longrightarrow 2\mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z} \stackrel{\rho}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

Supposons qu'il existe une section $s: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$

$$0 \xrightarrow{s} 0 \xrightarrow{\rho} 0$$

$$1 \longrightarrow 2 \longrightarrow 0 \neq 1$$

La deuxième ligne se justifie par :

$$s(1+1) = s1 + s1 = 4.$$

On aboutit ainsi à une contradiction.

Remarque 2.74. Une section $s: G \to E$ est toujours injective si $s(g) = 1_E$ alors

$$\rho(\underbrace{s(g)}_{=g}) = \rho(1_E) = 1_G,$$

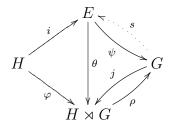
d'où $Ker(s) = \{1_G\}.$

Proposition 2.75. Étant donnée une suite exacte,

$$1 \longrightarrow H \xrightarrow{\varphi} E \xrightarrow{\psi} G \longrightarrow 1,$$

les assertions suivantes sont équivalentes :

- (i) il existe une section $s: G \to E$,
- (ii) il existe une action $\rho: G \to \operatorname{Aut}(H)$ et un isomorphisme $\theta: E \to H \rtimes G$ qui rend commutatif le diagramme suivant :



avec

$$\rho \circ \theta = \psi \ et \ \theta^{-1} \circ \varphi = i.$$

Démonstration. (ii) \Rightarrow (i) On pose $s = \theta^{-1} \circ j$. - $s \in \text{Hom}(G, E)$

$$\psi \circ s = \psi \circ (\theta^{-1} \circ j)$$
$$= (\psi \circ \theta^{-1}) \circ j$$
$$= \rho \circ j = \mathrm{id}_G.$$

(i) \Rightarrow (ii) On définit une action $\rho: G \to \operatorname{Aut}(H)$ par $\rho(g)(h) = s(g)hs(g)^{-1}$, avec $g \in G$ et $h \in H$. Autrement dit $\rho(g)$ est la conjugaison sur H par s(g) (où on identifie $h \in H$ à $\varphi(h) \in G$). On a bien

$$\rho(g)(H) = H,$$

c'est-à-dire $s(g)Hs(g)^{-1}=H$ car $H=\mathrm{Ker}(\psi)\triangleleft E$. On considère $H\bowtie G$ et on définit :

$$\theta : E \to H \rtimes G$$

$$x \mapsto \theta(x) = (x(s(\psi(x))^{-1}), \psi(x)),$$

avec $\psi(x) \in G$ et $x(s(\psi(x)))^{-1} \in H = \text{Ker } \psi^1$. On montre que θ est un morphisme, c'est-à-dire $\theta(x_1x_2) = \theta(x_1)\theta(x_2)$.

$$\theta(x_1x_2) = \left(x_1x_2(s(\psi(x_1x_2)))^{-1}, \psi(x_1x_2)\right),$$

$$\theta(x_1)\theta(x_2) = \left(x_1(s(\psi(x_1)))^{-1}, \psi(x_1)\right) \cdot \left(x_2(s(\psi(x_2)))^{-1}, \psi(x_2)\right)$$

$$= \left(x_1s(\psi(x_1))^{-1} \cdot s(\psi(x_1)) \cdot x_2(\psi(x_1))^{-1} s(\psi(x_2))^{-1}, \psi(x_1)\psi(x_2)\right)$$

$$= \left(x_1x_2s(\psi(x_1))^{-1}s(\psi(x_2))^{-1}, \psi(x_1)\psi(x_2)\right).$$

Or

$$x_1x_2s(\psi(x_1))^{-1}s(\psi(x_2))^{-1} = x_1x_2(s(\psi(x_2)\psi(x_1)))^{-1} \text{ et } \psi(x_1x_2) = \psi(x_1)\psi(x_2).$$

$$\psi(xs(\psi(x))^{-1}) = \psi(x).\psi(s(\psi(x)))^{-1}$$

= \psi(x)\psi(x)^{-1} = 1.

¹En effet (en rappelant que $\psi(s(x)) = x$),

Donc : θ est un morphisme, on montre maintenant qu'il est bijectif. θ a pour réciproque

$$\begin{array}{cccc} \theta' & : & H \rtimes G & \to & E \\ & (h,g) & \mapsto & hs(g) \end{array}$$

qui lui aussi est un morphisme :

$$\theta'((h_1, g_1), (h_2, g_2)) = \theta'(h_1 s(g_1) h_2 s(g_1)^{-1}, g_1 g_2)$$

$$= h_1 s(g_1) h_2 s(g_1)^{-1} . s(g_1 g_2)$$

$$= h_1 s(g_1) h_2 s(g_2)$$

$$= \theta'((h_1, g_1)) \theta'((h_2, g_2)).$$

En effet,

$$\theta' \circ \theta(x) = \theta'(x(s(\psi(x)))^{-1}, \psi(x))$$

$$= xs(\psi(x))^{-1}xs\psi(x) = x$$

$$\theta \circ \theta'(h, g) = \theta(hs(g)) = \left(hs(g)s(\psi(hs(g)))^{-1}, \psi(hs(g))\right)$$

$$= \left(hs(g)s(\psi(s(g)))^{-1}, \psi(s(g))\right) = (h, g).$$

Chapitre 3

Théorèmes de Sylow

3.1 p-groupes

Définition 3.1. Pour p un nombre premier, un p-groupe $\neq \{1\}$ est un groupe dont l'ordre est une puissance de p.

Proposition 3.2. Soit P un p-groupe. Si P opère sur un ensemble X fini alors si

$$X^p = \{ points fixes de l'action \},$$

on a

$$\operatorname{card}(X^p) \equiv \operatorname{card}(X) \pmod{p}.$$

Démonstration. Utiliser la formule des classes.

Corollaire 3.3. Le centre d'un p-groupe P est $\neq \{1\}$.

Démonstration. On considère l'action

$$\rho : P \to \operatorname{Per}(P)$$

$$g \mapsto \begin{array}{cccc} C_g : x \to gxg^{-1} \\ p \mapsto p \end{array}.$$

La proposition 3.2 donne

$$\operatorname{card}(P) \equiv \operatorname{card}(Z(p)) \pmod{p},$$

d'où $\operatorname{card}(Z(G)) = 0 \pmod{p}$. Comme $1 \in Z(G)$, on a $\operatorname{card}(Z(G)) = p$.

Proposition 3.4. Soient G un p-groupe et H un sous-groupe d'indice p. Alors $G \triangleright H$.

Démonstration. On considère l'action

$$\begin{array}{cccc} \rho & : & G & \to & \operatorname{Per}(G/H) \\ & g & \mapsto & \rho(g) : xH \to gxH \end{array} \quad \text{où } H = \operatorname{Ker} \rho.$$

Par translation à gauche sur les classes à gauche modulo H:

$$G/\operatorname{Ker}(P) \simeq \rho(G) \subset \operatorname{Per}(G/H) \simeq S_P$$
.

Donc:

$$\operatorname{card}(G/\operatorname{Ker}(\rho)) = p^{\alpha}|p!$$

et donc $p^{\alpha-1}|(p-1)!$ que donne :

$$\alpha - 1 = 0 \iff \alpha = 1.$$

Donc:

$$\operatorname{card}(G/\operatorname{Ker}(\rho)) = p = \operatorname{card}(G/H). \tag{3.1}$$

Or $Ker(\rho) \subset H$. Combiné à (3.1) qui se réécrit $card(H) = card(Ker \rho)$, cela donne :

$$H = \operatorname{Ker}(\rho) \triangleleft G$$
.

On peut ajouter une précision par rapport à (3.1): Z(G) contient un élément d'ordre p.

Démonstration. Soit $z \in Z(G)$ tel que $z \neq 1$. Cet élément z est d'ordre p^{β} avec $\beta \geq 1$. Posons alors $x = z^{p^{\beta}}$, alors $x \in Z(G)$ et est d'ordre p.

Proposition 3.5. Soit G un p-groupe d'ordre p^n . Alors il existe une suite de sous-groupe

$$\{1\} = G_0 \subset G_1 \subset \ldots \subset G_n = G$$

tel que $\operatorname{card}(G_i) = p^i$, pour i = 0, 1, ..., n et $G_i \triangleleft G$.

 $D\acute{e}monstration$. On fait une démonstration par récurrence sur n.

- Pour n = 0, on a $G = \{1\}$.
- Supposons $n \ge 0$. D'après le corollaire 3.3, il existe $x \in Z(G)$ tel que x est d'ordre p. On a : $\langle x \rangle \triangleleft G$ (car $x \in Z(G)$). Le groupe $G/\langle x \rangle$ est d'ordre p^{n-1} . D'après l'hypothèse de récurrence, il existe une suite :

$$\{1\} = H_0 \subset H_1 \subset ... \subset H_{n-1} = G/ < x >$$

de sous-groupes de $G/\langle x \rangle$ tel que card $(H_i) = p^i$ et $H_i \triangleleft G/\langle x \rangle$ pour i = 0, ..., n-1. Notons $s: G \to G/\langle x \rangle$ la surjection canonique. On pose :

$$G_i = s^{-1}(H_{i-1}), \qquad i = 1, ..., n.$$

Posons $G_0 = \{1\}$. On a ainsi

$$G_0 \subset G_1 \subset ... \subset G_n$$

tel que $G_i \triangleleft G$ pour i = 1, ..., n.

$$s^{-1}(H_{i-1}) \triangleleft s^{-1}(G/\langle x \rangle) \iff H_{i-1} \triangleleft G/\langle x \rangle.$$

On cherche maintenant $\operatorname{card}(G_i)$ pour i=1,...,n. On a $G_i=s^{-1}(H_{i-1})$, c'est-à-dire $s(G_i)=H_{i-1}\Rightarrow G_i/< x>=H_{i-1}$. Donc $\operatorname{card}(G_i)=\operatorname{card}(H_{i-1})$. $< x>=p^{i-1}p=p^i$.

Proposition 3.6. Soit G un p-groupe d'ordre p^n . Soit s < n et H un sous-groupe d'ordre p^s . Alors il existe un sous-groupe K d'ordre p^{s+1} tel qe $K \supset H$.

Démonstration. La preuve de cette proposition se fait par réccurrence sur n. Au rang n = 0 et n = 1, la propriété est vraie. Soit G d'ordre p^{n+1} , soit s < n+1 et soit H un sous-groupe p^s . Il existe $x \in Z(G)$ d'ordre P.

1er cas Si $x \notin H$ alors H < x > est un sous-groupe (car $x \in Z(G)$) qui contient H et est d'ordre :

$$\frac{\operatorname{card}(H) < x >}{\operatorname{card}(H \cap < x >)} = \frac{p^s p}{1}.$$

2ème cas Si $x \in H$, on a :

$$H < x > / < x > \simeq H/(H \cap < x >) = H/ < x >$$
 sous-groupe de $G/ < x >$,
$$\operatorname{card}(H/ < x >) = p^{s-1}, \qquad \operatorname{card}(G/ < x >) = p^{n+1-1} = p^n,$$

et s-1 < n. D'après l'hypothèse de réccurrence, il existe un sous-groupe $\mathcal{H}/< x > < G < x >$ (où $\mathcal{H} < G$ et $\mathcal{H} \supset < x >$) tel que $H/< x > \subset \mathcal{H}/< x >$ et $\operatorname{card}(\mathcal{H}/< x >) = p^s$. On a ainsi $\mathcal{H} < G$, $\mathcal{H} \supset H$ et :

$$\operatorname{card}(\mathcal{H}) = p^s.p = p^{s+1}.$$

3.2 Théorèmes de Sylow

Soit p un nombre premier.

Définition 3.7. Si G est un groupe fini d'ordre mp^n où $p \nmid m$, on appelle sous-groupe de Sylow de G, H un sous-groupe de G d'ordre p^n .

Théorème 3.8 (Théorèmes de Sylow). Soit $p \mid \operatorname{card}(G)$,

- 1. il existe au moins un p-sous-groupe de Sylow;
- 2. tout p-sous-groupe de G est contenu dans un p-sous-groupe de Sylow;
- 3. tous les p-sous-groupes de Sylow sont conjugués (c'est-à-dire si S et S' sont des p-Sylow, il existe $g \in G$ tel que $s' = gsg^{-1}$);
- 4. Le nombre de p-sous-groupes de Sylow divise m et est congru à 1 modulo p.

3.3 Applications

Théorème 3.9 (Cauchy). Soit G un groupe fini arbitraire, si $p \mid \operatorname{card}(G)$ alors il existe $g \in G$ d'ordre p.

Démonstration. On a card $(G) = p^k m$ avec $k \ge 1$ et $p \nmid m$. Soit un S un p-sylow d'ordre p^k . Soit $y \in S$, $y \ne 1$, y est d'ordre p^l avec $l \le k$. Alors $g = y^{p^{(l-1)}}$ est d'ordre p.

Théorème 3.10. Soient p et q deux nombrees premiers tel que p > q. Soit G un groupe d'ordre pq. Alors G est isomorphe au produit semi-direct d'un sous-groupe dinstingué H d'ordre p et d'un sous-groupe K d'ordre q. En particulier, G n'est pas un groupe simple (car $H \triangleleft G$).

Démonstration. Le nombre de p-Sylow de $G \equiv 1 \mod p$ et divise q. Donc c'est 1 (puisque p > q). Il existe un unique p-Sylow noté S_p . Il est automatiquement distingué¹. On pose $H = S_p$ et on

$$gS_ng^{-1} = S_n.$$

¹En effet si $g \in G$, gS_Pg^{-1} est un p-Sylow et donc

choisit un q-Sylow K. Alors HK est un sous-groupe d'ordre $\operatorname{card}(H)\operatorname{card}(K)/\operatorname{card}(H\cap K)=pq$. Donc G=HK. On a une suite exacte

$$1 \longrightarrow H \longrightarrow HK \stackrel{s}{\longleftarrow} HK/H \longrightarrow 1$$

et $HK/H \simeq K/(H \cap K) = K$. L'isomorphisme $s: HK/H \to K \subset HK$ est une section de la suite exacte. D'après la proposition 2.75,

$$HK \simeq H \rtimes KH/H \simeq H \rtimes K$$
.

Théorème 3.11. Soient G un groupe fini et S un p-Sylow. On défint $\operatorname{Nor}_G(S)$, le normalisateur de S dans G:

$$Nor_G(S) = \{ g \in G, gSg^{-1} = S \}.$$

 $On \ a :$

- $-S \subset \operatorname{Nor}_G(S),$
- $-\operatorname{Nor}_{G}(S) = G \iff S \triangleleft G,$
- $Nor_G(S)$ est un sous-groupe de G.
- De plus, $Nor_G(S)$ est le plus grand sous-groupe de G qui contient S et dans lequel S est distingué.

Ainsi:

$$\operatorname{Nor}_G(\operatorname{Nor}_G(S)) = \operatorname{Nor}_G(S).$$

 $D\acute{e}monstration.$ - $Nor_G(S) \subset Nor_G(Nor_G(S)).$

- Soit $n \in Nor_G(Nor_G(S))$,

$$nSn^{-1} \subset n \operatorname{Nor}_G(S)n^{-1} \quad \operatorname{car} S \subset \operatorname{Nor}_G(S),$$

 $\subset \operatorname{Nor}_G(S).$

Le sous-groupe S est un p-Sylow de G qui est contenu dans $Nor_G(S)$. S est donc aussi un p-Sylow de $Nor_G(S)$.

$$S \subset \operatorname{Nor}_G(S) \subset G$$
,

avec

- S est d'ordre pk,
- Nor_G est d'ordre $p^{k'}m'$ avec $k' \leq k$,
- $-\operatorname{card}(G) = p^k n.$

Nécessairement k' = k et S p-Sylow de $\operatorname{Nor}_G(S)$. De même, nSn^{-1} est un p-Sylow de $\operatorname{Nor}_G(S)$. D'après les théorèmes 3.8 de Sylow, S et nSn^{-1} sont conjugués dans $\operatorname{Nor}_G(S)$, c'est-à-dire il existe $h \in \operatorname{Nor}_G(S)$ tel que $nSn^{-1} = hSh^{-1}$ ou encore $h^{-1}nS(h^{-1}n)^{-1} = S$ donc $h^{-1}n \in \operatorname{Nor}_G(S)$. En conclusion

$$n = h.h^{-1}n \in Nor_G(S),$$

donc $n \in Nor_G(S)$.

Chapitre 4

Groupes abéliens, groupes nilpotents, résolubles

4.1 Groupes abéliens

Proposition 4.1. Soit G un groupe abélien d'ordre $m = p_1^{\alpha_1} ... p_r^{\alpha_r}$. Alors G est isomorphe au produit direct de ses p-sylows S_i pour i = 1, ..., r. De plus, si

$$\begin{array}{ccc} m_i & : & G & \to & G \\ & g & \mapsto & p_i^{\alpha_i} g \end{array},$$

$$S_i = \operatorname{Ker}(m_i) = \left(\prod_{j \neq i} p_j^{\alpha_j}\right) G.$$

Démonstration. (\supset) On veut montrer que $\operatorname{Ker}(m_i) \subset S_i$. L'inclusion est claire, d'après la proposition 1.17 et la remarque 1.18 car pour un élément $h \in \prod_{j \neq i} p_j \alpha_j$, on a que l'image de h par m_i vaut :

$$p_i^{\alpha_i} = \left(\prod_{j \neq i} p_j^{\alpha_j}\right) g = |G|g = 0.$$

(\supset) On veut montrer que $S_i \subset \text{Ker}(m_i)$. L'inclusion est claire car $|S_i| = p_i^{\alpha_i}$. Soit $G_i = \text{Ker}(m_i)$, on considère :

$$\begin{array}{cccc} \phi & : & G_1 \times \ldots \times G_r & \to & G \\ & & (g_1,\ldots,g_r) & \mapsto & g_1 + \ldots + g_r \end{array}.$$

- $-\phi$ est un morphisme.
- ϕ est injective : soit $(g_1, ..., g_n)$ ∈ Ker (ϕ) c'est-à-dire $g_1 + ... + g_r = 0$. On multiplie pour i par $\prod_{j\neq i} p_j^{\alpha^j}$. On obtient

$$\prod_{j \neq i} p_j^{\alpha_j} g_i = 0.$$

car pour $k \neq i$, $g_k \in G_k$ donc s'écrit

$$\prod_{j\neq k} p_j^{\alpha_j} g', \text{ où } g' \in G,$$

alors en multipliant par $\prod_{j\neq i} p_j^{\alpha_j}$, chaque terme autre que celui en i, contiennent le $\prod_{1\leq j\leq r} p_j^{\alpha_j} g'$, qui vaut 0, d'après la remarque 1.18. On sait aussi $p_i^{\alpha_i} g_i = 0$ car $g_i \in \operatorname{Ker}(m_i)$, avec $m_i(g) = p_i^{\alpha_i} g$. Par Bezout, il existe $u_i, v_i \in \mathbb{Z}$ tel que

$$u_i \prod_{j \neq i} p_j^{\alpha_j} + v_i p_i^{\alpha_i} = 1.$$

Cela donne $1g_i = 0 + 0$,

$$q_i = 0, \quad i = 1, ..., r,$$

donc $Ker(\phi) = \{(0, 0, \dots, 0)\}.$

- ϕ surjectif: les nombres $\prod_{j\neq 1} p_j^{\alpha_j}$, $\prod_{j\neq 2} p_j^{\alpha_j}$, ..., $\prod_{j\neq r} p_j^{\alpha_j}$ sont premiers entre eux. Il existe donc $u_1, ..., u_r \in \mathbb{Z}$ tel que

$$u_1 \prod_{j \neq 1} p_j^{\alpha_j} + \dots + u_r \prod_{j \neq r} p_j^{\alpha_j} = 1.$$

Ce qui donne pour tout $g \in G$,

$$g = u_1 \prod_{j \neq 1} p_j^{\alpha_j} g + \dots + u_r \prod_{j \neq r} p_j^{\alpha_j} g.$$

Or pour i = 1, ..., r.

$$\left(\prod_{j\neq i} p_j^{\alpha_j}\right) g \in G_i = \text{Ker}(m_i), \tag{4.1}$$

car $p_i^{\alpha_i}\left(\prod_{j\neq i}p_j^{\alpha_j}\right).g=|G|g=0$. D'où ϕ est surjectif. Ainsi ϕ est un isomorphisme. (4.1) prouve également $G_i\subset\left(\prod_{j\neq i}p_j^{\alpha_j}\right)G$. En effet, pour $g_i\in G_i$, (4.1) s'écrit :

$$g_i = 0 + \dots + 0 + \left(\prod_{j \neq i} p_j^{\alpha_j}\right) g + 0 + \dots + 0,$$

d'où $g_i \in \left(\prod_{j\neq i} p_j^{\alpha_j}\right) G$. Donc $G \simeq G_1 \times \cdots \times G_r$. Reste à montrer que $G_i \subset S_i$. On sait que $S_i \subset G_i$ et $|S_i| = p_i^{\alpha_i}$. S'il existe i_0 tel que $S_{i_0} \subset G_{i_0}$, on a :

$$|G| = |G_1 \times ... \times G_r| > p_1^{\alpha_1} \dots p_r^{\alpha_r} = |G|.$$

car un G_{i_0} contient strictement un S_{i_0} , et S_i est de cardinal $p_i^{\alpha_i}$ pour tout i. D'où la contradiction donc $G_i = S_i$ pour tout i.

Définition 4.2. On dit qu'un groupe fini est nilpotent s'il est isomorphe au produit direct de ses p-Sylows ou de façon équivalente s'il est isomorphe à un produit direct de p-groupes.

Remarques 4.3. 1. Si un groupe est abélien alors il est nilpotent.

2. Un p-Sylow d'un groupe nilpotent est nécessairement distingué (et donc à p fixé, il n'y a qu'un p-Sylow.

Proposition 4.4. Si S $(S \triangleleft S \times T^1)$ est le p-Sylow alors

- 1. $G \simeq S \times T$ (produit des autres p-Sylow),
- $2. G \triangleleft S$,
- 3. $S \simeq S \times \{1\}$,
- 4. $S \times T \triangleleft S \times \{1\}$.

$$(1,t)(s,1)(1,t)^{-1} = (s,1) \in S.$$

¹Soit $s \in S$ et $t \in T$ alors

Théorème 4.5 (Admis). (a) p-groupes abéliens : Soit G un p-groupe abélien fini. Alors G est isomorphe à un produit de p-groupes cycliques :

$$\mathbb{Z}/p^{\alpha_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/p^{\alpha_j}\mathbb{Z},$$

avec $\alpha_1 \leq \cdots \leq \alpha_j$. De plus, il y a unicité de $\alpha_1 \leq \cdots \leq \alpha_j$.

(b) groupe abélien : Soit G un groupe abélien fini. Alors G est isomorphe à un produit direct de groupes cycliques :

$$\mathbb{Z}/d_1\mathbb{Z}\times\mathbb{Z}/d_2\mathbb{Z}\times\cdots\times\mathbb{Z}/d_\ell\mathbb{Z}$$

avec $d_1|d_2, d_2|d_3, \ldots, d_{\ell-1}|d_{\ell}$. De plus, il y a unicité de la suite d_1, \ldots, d_{ℓ} .

Exemple 4.6. Soit un groupe G abélien d'ordre $360 = 2^3 \times 3^2 \times 5$. D'après le proposition 4.1, $G \simeq S_2 \times S_3 \times S_5$ (où S_2 , S_3 et S_5 sont des Sylows). En utilisant les propositions (a) et (b) du théorème 4.5, on obtient :

possibilité pour S_2	$\mathbb{Z}/8\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
possibilité pour S_3	$\mathbb{Z}/9\mathbb{Z}$	$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$	
possibilité pour S_5	$\mathbb{Z}/5\mathbb{Z}$		
possibilité pour G	$\mathbb{Z}/360\mathbb{Z}^2$		

Remarque 4.7. Avec les notations du théorème 4.5(b),

$$|G| = d_1 \times d_2 \times \cdots \times d_{\ell}.$$

On définit $\exp(G)$, l'exposant de G qui est le plus petit entier $n \geq 0$ tel que ng = 0, pour tout $g \in G$. Ici, $\exp(G) = d_{\ell}$.

Lemme 4.8 (Lemme chinois). Si p_1, \ldots, p_ℓ sont des nombres premiers distincts 2 à 2 et $\alpha_1, \ldots, \alpha_\ell$ des entiers > 1 alors

$$\mathbb{Z}/p_1^{\alpha_1}\cdots p_\ell^{\alpha_\ell}\mathbb{Z}\simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/p_\ell^{\alpha_\ell}\mathbb{Z}.$$

Attention $! \mathbb{Z}/p^2\mathbb{Z} \not\simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Démonstration.

$$Z \mapsto \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \dots \mathbb{Z}/p_{\ell}^{\alpha_{\ell}}\mathbb{Z}$$

$$n \to \overline{n} \pmod{p_1^{\alpha_1}}, \dots, \overline{n} \pmod{p_{\ell}^{\alpha_{\ell}}}$$

a pour noyau

$$\{n \in \mathbb{Z}, p_1^{\alpha_1}|n, \dots, p_\ell^{\alpha_\ell}|n\} = p_1^{\alpha_1} \dots p_\ell^{\alpha_\ell}\mathbb{Z},$$

d'où un morphisme injectif

$$\mathbb{Z}/p_1^{\alpha_1}\dots p_\ell^{\alpha_\ell}\mathbb{Z} \to \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \dots \times \mathbb{Z}/p_\ell^{\alpha_\ell}\mathbb{Z}$$

qui est un isomorphisme car les p_i -groupes ont le même ordre. On peut voir aussi d'après le théorème 4.5(a) que

$$\frac{\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_m^{\alpha_m}\mathbb{Z} \quad \text{avec } \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_m}{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}}$$

$$\frac{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}}{\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}}$$

$$\frac{\mathbb{Z}/5\mathbb{Z}}{\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}}$$

et $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z} \simeq \mathbb{Z}/360\mathbb{Z}$.

est unique et elle détermine le groupe à isomorphisme près, voir l'exemple 4.9. Le même raisonnement peut aussi se faire grâce au théorème 4.5(b):

$$\mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_\ell\mathbb{Z}$$
 avec $d_1|d_2|\dots|d_\ell$.

Il y a unicité de la suite $d_1|d_2|\dots|d_\ell$ qui détermine le groupe à l'isomorphisme près. \square

Exemple 4.9.

$$\underbrace{\mathbb{Z}/3\mathbb{Z}}_{3^1} \times \underbrace{\mathbb{Z}/27\mathbb{Z}}_{3^3} \simeq \underbrace{\mathbb{Z}/9\mathbb{Z}}_{3^2} \times \underbrace{\mathbb{Z}/9\mathbb{Z}}_{3^2}.$$

4.2 Commutateurs et groupes dérivés

Définition 4.10. Soit G un groupe. Soient H et K deux sous-groupe. On pose :

$$[H,K] \stackrel{\text{def}}{=} < \{hkh^{-1}k^{-1}, h \in H, k \in K\} >$$

qu'on appelle le groupe des commutateurs de H et K.

Lemme 4.11. Soient H, K < G et soit $f \in \text{Hom}(G, G)$. On a :

- (i) [H, K] = [K, H],
- (ii) f([H, K]) = [f(H), f(K)],
- (iii) $H \triangleleft G$ et $K \triangleleft G \Rightarrow [H, K] \triangleleft G$,
- (iv) $H \sqsubset G$ et $K \sqsubset G \Rightarrow [H, K] \sqsubset G$,
- (v) $K < \operatorname{Nor}_G(H) \Rightarrow [H, K] \subset H$.

Démonstration. (i) Soient $x \in H$ et $y \in K$

$$xyx^{-1}y^{-1} = (yxy^{-1}x^{-1})^{-1} \in [K, H]^{-1} = [K, H],$$

donc $\{xyx^{-1}y^{-1}, x \in H, y \in K\} \subset [K, H]$, donc $[H, K] \subset [K, H]$. La démonstration de l'autre inclusion est similaire.

(ii) Soient $x \in H$ et $y \in K$,

$$f(xyx^{-1}y^{-1}) = f(x)f(y)f^{-1}(x)f^{-1}(y).$$

Donc si $A = \{xyx^{-1}y^{-1}, x \in H, y \in K\},\$

$$f(A) = \{[u,v], \, u \in f(H), v \in f(K)\}.$$

On sait $f(\langle A \rangle) = \langle f(A) \rangle$, d'où f([H, K]) = [f(H), f(K)].

(iii) Soient $g \in G$ et C_q l'action intérieur correspondant. D'après (ii),

$$C_q([H, K]) = [C_q(H), C_q(K)] \subset [H, K].$$

(iv) Soit χ une action de G,

$$\chi([H, K]) = [\chi(H), \chi(K)] \subset [H, K].$$

(v) Soit $h \in H$ et soit $k \in K$. On a $hkh^{-1}k^{-1} \in H$.

Définition 4.12. Si G est un groupe, on appelle groupe dérivé, le groupe $D(G) = [G, G] \subset G$.

Définition 4.13. Un groupe fini est dit résoluble s'il existe n tel que $D^n(G) = \{1\}$.

Remarque 4.14. $D(G) \sqsubset G$.

Proposition 4.15. (a) D(G) est le plus petit sous-groupe distingué de G tel que G/D(G) abélien.

(b) Si A est un groupe abélien et $\varphi \in \operatorname{Hom}(G,A)$ alors $D(G) \subset \operatorname{Ker}(\varphi)$ et φ se factorise à travers G/D(G).

Démonstration. (a) Soit $H \triangleleft G$, alors

$$G/H$$
 abélien \iff $D(G) \subset H$. (4.2)

Soient $x, y \in G$ et $\overline{x}, \overline{y}$ leur classe mod H,

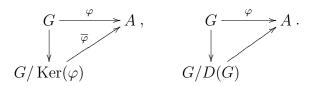
$$\overline{xy} = \overline{yx} \iff \overline{xyx^{-1}}\overline{y}^{-1} = 1$$

$$\iff \overline{xyx^{-1}y^{1}} = 1$$

$$\iff xyx^{-1}y^{-1} \in H \text{ (pour tous } x, y \in G).$$

Pour H = D(G), (4.2) montre que G/D(G) est abélien. Si H est un sous-groupe distingué tel que G/H est abélien alors (4.2) montre que $D(G) \subset H$, d'où (a).

(b) $\varphi: G \to A$ induit un morphisme injectif $G/\operatorname{Ker}(\varphi) \to A$. Donc $G/\operatorname{Ker}(\varphi)$ est isomorphe à un sous groupe de A et est donc *abélien*. (4.2) montre que $D(G) \subset \operatorname{Ker}(\varphi)$. On sait alors que φ se factorise par D(G).



Définition 4.16. On pose :

$$\begin{cases} D_0(G) = G, \\ D_{n+1}(G) = D(D_n(G)). \end{cases}$$

Donc

 $- D_1(G) = D(G),$

$$- D_2(G) = D(D(G).$$

Remarques 4.17. 1. $D_n(G) \sqsubset \cdots \sqsubset D_2(G) \sqsubset D_1(G) \sqsubset G$. En particulier, $D_n(G) \sqsubset G$.

2. $D_n(G)/D_{n-1}(G)$ est abélien.

Définition 4.18. Un groupe G est dit résoluble s'il existe $n \ge 0$ tel que $D_n(G) = \{1\}$.

Exemples 4.19. 1. Si un groupe est abélien alors il est résoluble.

2. $\mathcal{D}_n = \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ est résoluble. On a, pour $h, h' \in \mathbb{Z}/n\mathbb{Z}$ et $s, s' \in \mathbb{Z}/2\mathbb{Z}$,

$$(h,s)(h',s')(h,s)^{-1}(h',s')^{-1} = (\dots,s+s-s-s')$$

= $(\dots,0)$.

Ce qui donne $D(\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}) \subset \mathbb{Z}/n\mathbb{Z}$ et donc $D_2(\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}) \subset D(\mathbb{Z}/n\mathbb{Z}) = \{1\}.$

3. Un groupe G simple résoluble est nécessairement isomorphe à $\mathbb{Z}/p\mathbb{Z}$ avec p premier.

Démonstration. $D(G) \subseteq G$, donc $D(G) = \{1\}$ ou D(G) = G. Si D(G) = G alors $D_n(G) = G$, ce qui est impossible. Donc $D(G) = \{1\}$, c'est-à-dire G abélien. On sait que les groupes abéliens simples sont les groupes $\mathbb{Z}/p\mathbb{Z}$ avec p premier.

Proposition 4.20. La classe des groupes résolubles est stable par sous-groupe, par quotient et par produit semi-direct.

Démonstration. – Soit $H \subset G$ avec G résoluble. On a $D_n(H) \subset D_n(G)$. Donc si $D_N(G) = \{1\}$ alors $D_N(H) = \{1\}$, d'où H est résoluble.

- Soient G résoluble et $H \triangleleft G$. On a si $s: G \rightarrow G/H$ est la surjection canonique :

$$D_n(G/H) = D_n(s(G))$$

= $s(D_n(G))$. (4.3)

Si $D_N(G) = \{1\}$ alors $D_N(G/H) = \{\overline{1}\}$ et donc G/H résoluble. On vérifie tout de même l'égalité (4.3). Pour n = 1

$$D(s(G)) = s(D(G))$$

D'après la propriété (ii) du lemme 4.11,

$$[s(G), s(G)] = s([G, G]).$$

On suppose la propriété vraie pour n, on veut la montrer pour n+1:

$$D_{n+1}(s(G)) = D(D_n(s(G))) = D(s(D_n(G)))$$
 (hypothèse de récurrence)
= $s(D(D_n(G)))$
= $s(D_{n+1}(G))$.

- Soit $G \rtimes H$, un produit semi-direct d'un groupe G résoluble et d'un groupe H résoluble. Pour $g, g' \in G$ et $h, h' \in H$,

$$(g,h)(g',h')(g,h)^{-1}(g',h')^{-1} = (\dots,hh'h^{-1}(h')^{-1}).$$

Cela montre que $D(G \rtimes H) = G \rtimes D(H)$. On en déduit $D_n(G \rtimes H) \subset G \rtimes D_n(H)$. Si $D_N(H) = \{1\}$, on obtient $D_N(G \rtimes H) \subset G$. Si $D_M(G) = \{1\}$, $D_{M+N}(G \rtimes H) \subset D_M(G) = \{1\}$, d'où $G \rtimes H$ résoluble.

Remarque 4.21. Il est plus généralement vrai que pour G un groupe et $H \triangleleft G$,

G résoluble \iff H résoluble et G/H résoluble.

Corollaire 4.22. On a:

- (i) Si un groupe est abélien alors il est nilpotent.
- (ii) Si un groupe est nilpotent alors il est résoluble.

Les réciproques sont fausses.

Démonstration. (i) Voir les remarques 4.3.

(ii) Un groupe nilpotent est isomorphe à un produit direct de p-groupes; Il suffit de montrer qu'un p^2 -groupe est résoluble. Soit G un p-groupe d'ordre p^n . On fait une récurrence p^n . Les propriétés sont vraies pour n=0 et n=1. Elle est vraie aussi pour n=2 car tout groupe d'ordre p^ℓ est abélien. Si G est d'ordre p^{n+1} , on sait qu'il existe $H \triangleleft G$ tel que $|H| = p^n$. Ainsi |G/H| = p et donc G/H est cyclique donc abélien, ce qui donne $D(G) \subset H$. Par l'hypothèse de récurrence, H est résoluble donc il existe N tel que $D_N(H) = \{1\}$. D'où $D_{N+1}(G) = \{1\}$.

Démonstration des réciproques fausses. (i) On a déjà vu que la réciproque est fausse.

(ii) $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est résoluble et n'est pas nilpotent car s'il était nilpotent $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ serait abélien.

Remarque 4.23. Le théorème de Rait-Thompson nous dit que tout groupe d'ordre impaire est résoluble.

Exemple 4.24. Soit S_n le groupe de *n*-permutaions et A_n le groupe alterné.

 $n=5,\ \mathcal{A}_n$ est simple et donc non résoluble. \mathcal{A}_n n'est donc pas nilpotent. \mathcal{S}_n n'est pas résoluble car son sous-groupe \mathcal{A}_n ne l'est pas.

 $n=2, \ \mathcal{A}_2=\{1\} \ \text{et} \ \mathcal{S}_2\simeq \mathbb{Z}/2\mathbb{Z}.$

 $n=3,\ \mathcal{A}_3\simeq\mathbb{Z}/3\mathbb{Z}, \mathcal{S}_3\simeq\mathbb{Z}/3\mathbb{Z}\rtimes\mathbb{Z}/2\mathbb{Z}$ sont résoluble mais non nilpotent (donc non abélien).

n = 4, A_4 est d'ordre $12 = 2^2 \times 3$.

3-Sylow: $S_3 = \mathbb{Z}/3\mathbb{Z}$,

2-Sylow: $S_2 = \mathbb{Z}/4\mathbb{Z}$ ou $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Si \mathcal{A}_4 est nilpotent alors $A_4 \simeq S_3 \times S_2$ serait abélien. Donc \mathcal{A}_4 n'est pas nilpotent. \mathcal{S}_4 est d'ordre 24 :

3-Sylow : $S_3 \simeq \mathbb{Z}/3\mathbb{Z}$,

2-Sylow: S_2 est d'ordre 8.

Si S_4 est nilpotent alors $S_4 \simeq S_3 \times S_2$ et les élément de S_3 commutent à cause de S_2 . Tout 3-cycle est dans un 3-Sylow et tout 2-cycle est dans un 3-Sylow car il existe un 3-cycle et un 2-cycle qui ne commutent pas. Donc S_4 n'est pas nilpotent. On cherche à savoir si S_4 et A_4 sont résolubles. On a :

$$D(\mathcal{A}_4) = V_4 \qquad \text{abélien} \tag{4.4}$$

donc $D_2(\mathcal{A}_4) = \{1\}$ d'où \mathcal{A}_4 est résoluble

Démonstration de l'égalité (4.4). (\subset) $V_4 \triangleleft A_4$ et $A_4/V_4 \simeq \mathbb{Z}/3\mathbb{Z}$ abélien donne que $D(A_4) \subset A_4$.

(⊃) résulte de la formule

$$(xyz)(xyt)(xyz)^{-1}(xyt)^{-1} = (xy)(zt).$$

On finit l'exemple en donnant une preuve comme quoi S_4 est résoluble. $D(S_4) \subset A_4$ car $s(xyx^{-1}y^{-1}) = s(x)s(y)s(x)^{-1}s(y)^{-1} = 1$, ce qui donne finalement

$$D_3(\mathcal{S}_4) \subset D_2(\mathcal{A}_4) = \{1\}$$

qui montre bien que S_4 est résoluble.